Message passing. . .

sl panal

;
;
3

5
|
a
x

Zinc® Application Framework"

Programming Techniques

Version 3.5

Zinc Software Incorporated
Pleasant Grove, Utah

Copyright © 1990-1993 Zinc Software Incorporated Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

TABLE OF CONTENTS

INTRODUCTION" ¢ 4% &5 snte o S0 40 W0 0LRLL TIE FE 28000 -k 2B s 1
SECTION I

HEELOWORLDY i innnomscn v e e s ainnssmmnssnssnsisbs sk i, 7
CHAPTER 1 - INITIALIZING THE LIBRARY 9

Running the program
Include files

The screen display
The event manager
The window manager
A simple window
Program flow
Cleanup

Run-time features

CHAPTER 2 - HELP AND ERROR SYSTEMS 23
The UI_APPLICATION class
The help system
The error system
Exit function
Multiple windows
Program flow
Cleanup
Run-time features

CHAPTER 3 - USING ZINC DESIGNER 41
Creating a file
Creating a window
Creating a window object
Creating additional windows
Saving the file
Window access
Run-time features

CHAPTER 16 - CUSTOMIZED DISPLAYS 171
Conceptual design
Class implementation

Conclusion
SECTION V
PORTABILITY ISSUES . . o ocovie i i 6558580 0nasssss i W dl i e 183
CHAPTER 17 - MULTI-LANGUAGE PROGRAMS 185

Program execution
Class definition

Why INTL_WINDOW?
Design issues

Using INTL_WINDOW
Conclusion

CHAPTER 18 — INTERNATIONAL CURRENCY 193
Program execution
Class definition
UIW_INTL_CURRENCY()
Support structures
Currency translation
User interaction
Key Mapping
Event()
Enhancements

SECTION VI
PERSISTENT OBJECTScosssmess s5vssssd%wliddgadslonhomnsl 207

CHAPTER 19 - GRAPHIC OBJECTS 209
C and C++
Basic storage and retrieval
Abstract storage and retrieval

CHAPTER 20 - ZINC WINDOW OBJECTS 223

Implementation details
Conclusion

viii

SECTION VII
ZINC DESIGNER 229

CHAPTER 21 - GETTING STARTED 231
The Designer Screen
How To Start

CHAPTER 22 - FILE OPTIONS i 237
New
Open
Save
Save As
Delete
Preferences
Exit

CHAPTER 23 - EDIT OPTIONS i, 251
Object
Advanced
Cut
Copy
Paste
Delete
Move
Size

CHAPTER 24 - RESOURCE OPTIONS, 257
Create
Load
Store
Store As
Edit
Clear
Delete
Test

CHAPTER 25 -OBJECT OPTIONS, 267

CHAPTER 26 - INPUT OBJECTSo, 271
String
Formatted String
Text
Date

Time
Bignum
Integer
Real

CHAPTER 27 - CONTROL OBJECTS . . . o cviomoss s sasessssaalinaeeds 297
Button
Radio Button
Check Box
Vertical List
Horizontal List
Combo Box
Vertical Scroll Bar
Horizontal Scroll Bar
Child Window

CHAPTER 28 - MENU OBJECTS A e ER I ATY I WO S a8 325
Pull-Down Menu
Pull-Down Item
Pop-Up Item
Tool Bar

CHAPTER 29 - STATIC OBJECTS i 337
Prompt
Group
Icon

CHAPTER 30 - UTILITIES OPTIONS i 343
Image Editor
Help Editor

CHAPTER 31 - HELP OPTIONS e e c e 363
Index
File
Edit
Object
Resource
Utilities
About Designer

SECTION VIII
APPENDECES . ..o cvmoscisioieesssmmmanmmnnanensamsnssssss i 365

APPENDIX A — COMPILER CONSIDERATIONSu ... 367
Borland
Microsoft
Zortech
Motif

APPENDIX B - EXAMPLE PROGRAMS 383
ANALOG
BIO
CALC
CALENDAR
CHECKBOX
CLOCK
COMBOBOX
DIRECT
DRAW
DISPLAY
ERROR
FILEEDIT
FREESTOR
GRAPH
MESSAGES
PERIODIC
PHONEBK
PUZZLE
SPY
VALIDATE

APPENDIX C - ZINC CODING STANDARDS 389
Naming
Classes and structures
Functions
Variables
Constants
Organization
Class scopes
Files
Comments
Files
Functions

Xi

Variables

Blocks

Indentation

Classes and structures
Functions

Function calls

Case statements

If and for statements
Multi-line equates

APPENDIX D — QUESTIONS AND ANSWERS

Ahh!...getting help

Bitmaps/Icons not displaying
Changing object flags

Changing the map tables

Checking for selected objects

Closing the current window

Compiler warning.

Display/Mouse remaining active
Finding an object in a window
Finding the current window

Finding the parent window

Fix-up overflow errors

International language

Making a window current
“Out-of-memory”’ compiler errors
Preventing the modification of objects
Putting a single object in multiple windows
Re-displaying objects and windows
Royalties

Undetected graphics mode

Using the Q_NO_BLOCK flag

Using member functions as user functions
Using .ICO and .BMP files

Xii

INTRODUCTION

The purpose of this manual is to help you get started using Zinc Application Framework
and to teach you the theories used in the design and implementation of the library.
Although most of the concepts and programming styles presented in this book can be
understood by beginning C++ programmers, if you have problems we recommend you use
an accompanying book on C++ as a cross-reference. Some books that introduce the C++
programming language are:

* Borland C++, Programmer’s Guide. Scotts Valley, CA: Borland International, 1992,
444 pages.

e Ellis, Margaret A. and Bjarne Stroustrup. Annotated C++ Reference Manual.
Reading, MA: Addison-Wesley, 1990, 447 pages.

* Dewhurst, Stephen C. and Kathy T. Stark. Programming in C++. Englewood Cliffs,
New Jersey: Prentice Hall, 1989, 233 pages.

* Eckel, Bruce. Using C++. Berkeley, CA: Osborne/McGraw-Hill, 1990, 617 pages.

* Gorlen, Keith; Stanford Orlow and Perry Plexico. Data Abstraction and Object-
Oriented Programming in C++. New York, NY: John Wiley & Sons, 1990, 403

pages.

* Hansen, Tony L., The C++ Answer Book. Reading, MA: Addison-Westley, 1990, 578
pages.

* Laurel, Brenda, ed. The Art of Human-Computer Interface Design. Reading, MA:
Addison-Wesley, 1990. (50 essays related to effective user-interface design)

* Lippman, Stanley B. C++ Primer. Reading, MA: Addison-Westley, 1989, 464 pages.

* Microsoft C/C++, C++ Language Reference. Redmond, WA: Microsoft Corporation,
1992, 452 pages.

* Petzold, Charles. Programming Windows. Redmond, WA: Microsoft Press, 1990, 944
pages.

* Pohl, Ira. C++ for C Programmers. Redwood City, CA: Benjamin/Cummings
Publishing, 1989, 244 pages.

Introduction 1

o Stevens, Al. Teach Yourself C++. Portland, OR: MIS Press, 1990, 272 pages.

e Stroustrup, Bjarne. The C++ Programming Language. Reading, MA: Addison-
Westley, 1986, 328 pages.

o Voss, Greg and Paul Chui. Turbo C++ DiskTutor. Berkeley, CA: Osborne/McGraw-
Hill, 1990.

e Wiener, Richard S. and Lewis J. Pinson. An Introduction to Object Oriented
Programming and C++. Reading, MA: Addison-Westley, 1989, 273 pages.

e Zortech C++, Compiler Reference. Arlington, MA: Symantec Incorporated, 1991,
483 pages.

In addition, you should have the Programmer’s Reference available, as many of the
tutorials refer to constructors, member variables and member functions that are described
in detail in the reference manual.

Every section is designed to stand on its own and to teach a particular set of design and
implementation issues. In addition, the tutorials in each section range from beginning to

advanced. Here is a brief introduction of the topics covered in this manual:

Section I—Hello World! tells you how to initialize the main components of Zinc
Application Framework. Concepts covered in this section include:

e initializing the screen display (first tutorial).

e creating input devices, such as the keyboard and a mouse, along with their
controlling object, the Event Manager (first tutorial).

e constructing windows with sub-objects and then attaching them to their
controlling object, the Window Manager (first tutorial).

e using the help and error systems (second tutorial).
o using the UI_APPLICATION class to initialize your program.

o using persistent window objects created with the interactive design tool (third
tutorial).

NOTE: We recommend that you read this section first so that you understand the
Zinc initialization process used by all subsequent tutorials in this manual.

Zinc Application Framework—Programming Techniques

Section II—Dictionary describes the transition from C to C++, building Zinc
Application Framework applications, using Zinc Designer, and using the Zinc data
file for load/store operations.

Section III—Zinc Application Program describes the overall design and
implementation issues you should be concerned about when creating applications
using C++ and Zinc Application Framework. This set of tutorials examines an
application program to show how Zinc Application Framework’s event driven, object-
oriented architecture can be used to create effective and easy-to-use applications in
a fraction of the time needed to create applications without Zinc.

Section IV—Derived Classes contains a set of tutorials that show how Zinc
Application Framework classes can be modified to perform customized operations.
The following tutorials are contained in this section:

Macro device—This tutorial shows how to derive a macro device from the UI_-
DEVICE base class. The macro input device looks for certain keyboard
characters (F5 through F8) and then converts the special keys to macro
operations.

Help bar—This tutorial shows you how to create a help bar class from the UI_-
WINDOW_OBJECT base class and how to integrate it into an application.

Virtual list—This tutorial shows you how to create a low-level virtual list class,
then how to derive a presentation virtual list class from the UTW_WINDOW base
class. This class is useful when you want to present a lot of list information that
is contained on disk.

Customized display—This tutorial explains how screen display classes are
implemented from the UI_DISPLAY base class.

Section V—Portability Issues contains a set of tutorials that illustrate how Zinc
Application Framework can be used to handle internationalization of languages and
currencies. The following tutorials are contained in this section:

Multi-Language Programs—This tutorial shows how Zinc can detect the
system’s default country settings and then access a .DAT file to retrieve a
particular window based on the current country settings.

International Currency—This tutorial shows how multiple currency formats can

be displayed simultaneously and how exchange rate information can be used
when changing country codes.

Introduction 3

Section VI—Persistent Objects contains a set of tutorials that present the concept
of persistent objects (i.e., objects that can be stored to and retrieved from disk).
These tutorials begin by comparing the basic storage techniques employed by both
C and C++. The tutorial concludes with a discussion of the implementation
techniques used to store Zinc window objects.

Section VII—Zinc Designer contains a set of reference chapters describing the
functions associated with Zinc Designer and each of its components.

File Options—This chapter outlines the general operations of Zinc Designer.
File operations and presentation preferences are illustrated.

Edit Options—This chapter outlines how to change the appearance and
performance of objects within the current file.

Resource Options—This chapter outlines how to create, modify, retrieve and
test resources in the current file.

Object Options—This chapter displays the options that allow you to actually
create objects.

Input Options—This chapter discusses how to create input objects such as:
string, formatted string, text, date, time, bignum, integer and real.

Control Options—This chapter discusses how to create control objects such as:
button, radio button, check box, vertical list, horizontal list, combo box, vertical
scroll bar, horizontal scroll bar and child window.

Menu Options—This chapter discusses how to create menu objects such as pull-
down menu and tool bar.

Static Options—This chapter discusses how to create static objects such as:
prompt, group box and icon.

Utilities Options—This chapter outlines the interaction of the image and help
editors.

Help Options—This chapter outlines the on-line help available within Zinc
Designer.

Section VIII—Appendices addresses other topics that may be useful when
developing applications. The following information is contained in appendix

chapters:

Zinc Application Framework—Programming Techniques

Compiler Considerations—This appendix discusses the compiler dependencies
that you need to consider when using Zinc Application Framework.

Example Programs—This appendix briefly describes the Zinc support programs
installed in \ZINC\EXAMPLE. These example programs are designed to help
you with specific implementation issues of using Zinc Application Framework.

Zinc Coding Standards—This appendix gives you the coding standards Zinc
Software employees use when coding the library, example and tutorial source
code modules. This appendix is included to help you get “up-to-speed” with
the coding style you see throughout the tutorial programs, example programs and
sample code contained in the Zinc Application Framework manuals.

Common Questions and Answers—This appendix contains a set of commonly
asked technical support questions about Zinc Application Framework.

If you need assistance after studying the tutorial programs and example programs, or have
questions in general, please contact our technical support group at (801) 785-8998
between the hours of 8:00 a.m. and 5:00 p.m. Mountain Standard Time. In Europe call
+44 (0)81 855 9918 between 9:00 a.m. and 5:00 p.m. London Time. Technical Support
is closed Saturdays, Sundays and holidays.

In addition, our bulletin board system is updated regularly with the latest maintenance
release of the software, example programs and ideas concerning Zinc Application
Framework. This service is available 24 hours a day by calling (801) 785-8997 with 300-
9600 baud (V.32 bis), 8 data bits, no parity and 1 stop bit or by calling (801) 785-8995
with 300-9600 baud (HST dual standard), 8 data bits, no parity and 1 stop bit. In Europe
call +44 (0)81 317 2310 with 300-9600 baud (HST dual standard), 8 data bits, no parity
and 1 stop bit.

No set of tutorials can address all of the questions that you could have concerning the
design and implementation of applications. We are confident, however, that you will find
the tutorial programs, example programs, technical support and bulletin board service
invaluable in your effort to learn C++ and Zinc Application Framework.

NOTE: All of the figures in these tutorials were taken from the Microsoft Windows

environment. The actual presentation of a particular window may vary depending on the
environment and the type of display used.

Introduction 5

6 Zinc Application Framework—Programming Techniques

SECTION |
HELLO WORLD!

Section | — Hello World!

Zinc Application Framework — Programming Techniques

CHAPTER 1 - INITIALIZING THE LIBRARY

The first tutorial program in this section shows you how to set up the basic Zinc
Application Framework elements. The basis for this tutorial comes from the classic
“Hello, world” example given in several programming language books. For example,
page 12 of The C++ Programming Language (Stroustrup, Bjarne. Reading, MA: Addison-
Westley, 1986) implements the following C++ code for the “Hello, world” program:

#include <iostream.h>

main ()

{
}

cout << "Hello, world\n";

The above program prints the text “Hello, world” to the screen. The program to be
presented in this chapter plays on this theme by displaying the text “Hello, World!” in
a window. The figure below shows how the window will look once the program is
complete.

ello, World!

The code for this tutorial is located in \ZINC\TUTOR\HELLO\HELLO1.CPP. The
major steps involved in the creation of this program are:

e Declaration of include files

* Definition of the screen display (text, graphics or host environment)

* Definition of the Event Manager with input devices (mouse, keyboard)
e Definition of the Window Manager

* Creation of the simple “Hello World!” window

* The main program loop that coordinates input information

Chapter 1 — Initializing the Library 9

e Cleanup
If you are not familiar with the process involved in compiling source code modules, you
should take a few minutes to read “Appendix A—Compiler Considerations.” Most of

the programs in these tutorials have been created to run in all environments (i.e., DOS
Text, DOS Graphics, Microsoft Windows 3.X, Windows NT, IBM 0S/2 and OSF/Motif).

Running the program

Before the Hellol program can be run, it must be compiled. To compile the DOS version
of the “Hello World!” class of programs, type the following:

make -fborland.mak dos
or

nmake -fmicrosft.mak dos
or

make -fzortech.mak dos

and then press return. To compile the Microsoft Windows 3.X versions of the *“Hello
World!” class of programs, type the following:

make -fborland.mak windows
or

nmake -fmicrosft.mak windows
or

make -fzortech.mak windows

and then press return. To compile the Windows NT version of the “‘Hello World!” class
of programs, type the following:

nmake -f mscwnt.mak winnt

and then press return. To compile the IBM OS/2 version of the “Hello World!” class
of programs, type the following:

10 Zinc Application Framework — Programming Techniques

make -fborland.mak os2
or
make -fzortech.mak os2

and then press return. To compile the Motif version of the “Hello World!” class of
programs, type the following:

make -f motif.mak motif
or
make

and then press return.

The naming convention for the Hellol executable program (as well as all other Zinc-
provided utilities, tutorials and examples) is as follows:

hellol (for DOS)
or

whellol (for Windows 3.X)
or

whellol (for Windows NT)
or

ohellol (for OS/2)
or

hellol (for Motif).

To exit any version of the Hellol program, double-click on the system button with the
mouse or press <Alt+F4> with the keyboard.

Chapter 1 — Initializing the Library 11

Include files

The first step in writing the “Hello World!”” program is declaring the proper include file.
Zinc Application Framework allows access to the following include files:

UI_ENV.HPP—Contains compiler and environment-specific defined values and
information.

UI_GEN.HPP—Contains the definitions of low-level classes used throughout the
library, including UI_ELEMENT and UI_LIST.

UI_DSP.HPP—Contains the definition of all display related class information.

UI_EVT.HPP—Contains information used by the Event Manager and window
objects when they communicate to, or receive information from, the Event Manager.

UI_WIN.HPP—Contains the class definitions for the Window Manager, as well as
for all windows and window objects.

These files do not require nor contain any compiler specific include files. However,
environment specific include files are included in UL_ENV.HPP (e.g., WINDOWS.H is
included for Microsoft Windows, OS2.H is included for OS/2). This makes it possible
to create applications without having to determine whether or not any compiler include
files have already been incorporated. The hierarchy observed by Zinc Application
Framework include files is represented in the figure below:

UI_GEN.HPP

/ /' ULDSP.HPP
UI_EVT.HPP B \

/ ULWIN.HPP

Since the “Hello World!” program creates a window to display its text, the UI_WIN.-
HPP include file is needed. Accordingly, it is declared at the top of HELLO1.CPP:

#include <ui_win.hpp>

12 Zinc Application Framework — Programming Techniques

NOTE: Because of the include file hierarchy, including the UI_ WIN.HPP file also causes
the UI_EVT.HPP, UI_DSP.HPP, UL_GEN.HPP and UI_ENV.HPP files to be included.

The screen display

The next step in writing the “Hello World!” program requires that you set up the screen.
This is accomplished through the following code:

#if defined(ZIL_MSDOS)
main ()
{
// Create the MSDOS display.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;
if (!display->installed)
{

delete display;
display = new UI_TEXT DISPLAY;

}
#elif defined (ZIL_MSWINDOWS)
int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance, LPSTR,
int nCmdShow)
{
// Create the Windows display.
UI_DISPLAY *display = new UI_MSWINDOWS_DISPLAY (hInstance, hPrevInstance,
nCmdShow) ;
#elif defined (ZIL_0S2)
main ()
{
// Create the 0S/2 display.
UI_DISPLAY *display = new UI_0S2_DISPLAY;
#elif defined(ZIL_MOTIF)
main(int argc, char **argv)
{
// Create the Motif display.
UI_DISPLAY *display = new UI_MOTIF_DISPLAY (&argc, argv, "ZincApp");
fendif

The UI_DISPLAY class is used by all Zinc Application Framework classes that present
information to the screen, whether in text or graphics modes of operation. For example,
the DOS version of the “Hello World!” program ensures that the highest resolution
display is used by first trying to create a graphics display. If no graphics display is
available, it then creates a text display. A forced 25x80 text display could have been
created by replacing the DOS code above with:

// Initialize the display.
UI_DISPLAY *display = new UI_TEXT_DISPLAY (TDM_25x80) ;

The Windows display is initialized by three parameters: hlnstance, hPrevinstance and
nCmdShow. These parameters are passed into the program by the windows system and
need only be passed directly on to the UL_ MSWINDOWS_DISPLAY constructor. This
will be presented again later in this tutorial.

Chapter 1 — Initializing the Library 13

The Motif display is initialized by three parameters: argc, argv and "ZincApp". The first
two are the standard command-line parameters passed to any C/C++ program. The third
parameter is the name of the class of application being created. These arguments are
passed to the display class so that they may be passed to the Xt Intrinsic initialization
routines, thus allowing Zinc applications to take advantage of all the regular X command-
line options (e.g., using other displays, colors, fonts, etc.).

You may have noticed that the display variable is declared as UI_DISPLAY and not as
UI_MSC_DISPLAY, or any other type of display that is actually constructed. The
UI_DISPLAY class is a generic base class from which all Zinc Application Framework
text and graphics displays are derived. Thus, when a window is shown on the screen, it
uses UI_DISPLAY member functions to draw screen information. This concept is
illustrated below:

K\
UI_WINDOW_OBJECT —————p UI_DISPLAY

UI_BGI_DISPLAY
UI_FG_DISPLAY
UI_GRAPHICS_DISPLAY
UI_MOTIF_DISPLAY
UI_MSC_DISPLAY
UI_MSWINDOWS_DISPLAY
UI_OS2_DISPLAY

UI_TEXT_DISPLAY

The event manager

14

After the display class has been created, the Event Manager and input devices must be
created. This is accomplished with the following code:

// Initialize the event manager and add three devices to it.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

The Event Manager is constructed in the first line. It requires one parameter:
e display is used by the input devices to display information on the screen. For

example, the UID_CURSOR device uses the display argument to paint a blinking
cursor on the screen (in graphics mode).

Zinc Application Framework — Programming Techniques

After the Event Manager is created, three input devices (i.e., keyboard, mouse, cursor) are
attached to it using the overloaded operator UIL_EVENT_MANAGER::operator +.

“Chapter 3—Conceptual Design” in the Programmer’s Guide discusses the interaction
between input devices and the Event Manager within Zinc Application Framework. The
figure below reviews this interaction:

KEYBOARD | | MOUSE CURSOR

v

\ UI_EVENT_MANAGER
v —>
€ MAIN PROGRAM CONTROL D

—
L UI_WINDOW_MANAGER 1

The window manager

The final basic component of Zinc Application Framework is the Window Manager,
which is created with the following code:

// Initialize the window manager.
UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER (display,
eventManager) ;

The Window Manager is constructed with two parameters:

* display is used to send window information to the screen (such as commands to draw
lines, fill regions or display text on the screen).

* eventManager is used to send system and input information through Zinc Application
Framework.

“Chapter 3—Conceptual Design” in the Programmer’s Guide also briefly discusses the

interaction of the Window Manager within Zinc Application Framework. The figure
below reviews this interaction:

Chapter 1 — Initializing the Library 15

r UI_EVENT_MANAGER J
— >

{oni MAIN PROGRAM CONTROL)

-—

UL WINDOW_MANAGER

WINDOW 1

In this program, only one window is attached to the Window Manager. Thus, all relevant
information passed to the Window Manager will be passed to that window.

A simple window

You are now ready to create the ‘““Hello World!” window and to attach it to the screen.
Let’s examine the original picture of the ‘““Hello World!” window to identify the major
window objects (also known as support objects) that need to be created:

Hello, World

These window objects are:

o the window itself (This object is not visible, but it is used to store all the related
window objects identified below.)

e the border (Shown as the exterior shaded region of the window.)

o the maximize button (Shown as a button at the right top of the window with a ‘4’
character.)

16 Zinc Application Framework — Programming Techniques

* the minimize button (Shown as a button at the right top of the window with a ‘v’
character.)

* the system button (Shown as a button on the left top side of the window with a ‘—’
character.)

* the title (Shown with the “Hello World Window” text on the top center of the
window.)

The only general object attached to the “Hello World Window”’ is:
* the text field containing the ‘“Hello World!” message.

Now that we have identified the objects, let’s look at the code used to create them:

// Create the "Hello World!" window.
UIW_WINDOW *window = new UIW_WINDOW(5, 5, 40, 6).;

// Add the window objects to the window.
*window
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON
new UIW_TITLE("Hello World Window")
new UIW_TEXT(0, 0, 0, 0, "Hello World!", 256, WNF_NO_FLAGS,
WOF_NON_FIELD_REGION) ;

+ + + 4+ +

// Add the window to the window manager.
*windowManager + window;

Notice how logical and consistent code creation is! The window is created first with the
following arguments:

* 5 and 5 are cell coordinates that specify the left-top position of the window on the
screen.

* 40 and 6 specify the width and height of the window.

The window objects are created next, using the new operator. Once a window object is
created, it is added to the window, using the UIW_WINDOW::operator + operator
overload. (See the Programmer’s Reference for more information about an individual

window object and the protocol used in its construction.)

Finally, the window is attached to the Window Manager, again using the + operator
(overloaded by the UI_WINDOW_MANAGER class).

Chapter 1 — Initializing the Library 17

Program flow

In general, the conceptual flow of event driven programs is different from structured
programs. The “Hello World!” program has a very simple program flow, as illustrated
in the figure below:

{ UI_EVENT_MANAGER
©) + —
Gl MAIN PROGRAM CONTROL i
® - + @

UI_WINDOW_MANAGER |

v

Hello World Window

The code implementation of this flow is shown below. (NOTE: The step identifiers to the
right are not part of the actual code.)

// Wait for user response.
EVENT_TYPE ccode;
UI_EVENT event;

do
{
// Get input from the user.
eventManager->Get (event) ; (1)
// Send event information to the window manager.
ccode = windowManager->Event (event) ; (2)
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ; (3)

The figure and code above should help you to understand the high level operation of the
program, which can be outlined as follows:

1—The user enters information by pressing a keyboard key or by pressing a mouse
button.

2—The event information is passed to the Window Manager. At this point, the
Window Manager sends the event information to the current window.

3—The Window Manager’s return code is examined to determine whether or not to

continue program execution. If execution does continue, it will return to the first
step.

18 Zinc Application Framework — Programming Techniques

Cleanup

The following code is used to delete the Window Manager, Event Manager and display:

// Clean up.

delete windowManager;
delete eventManager;
delete display;

The order of deletion is important! The deletion of the Window Manager, Event Manager
and display must be in the reverse order of their construction. Since the Window
Manager maintains pointers to the Event Manager and to the display, it must be destroyed
first. If the Window Manager were not deleted first, it would have valid pointers that
were pointing to invalid memory (i.e., deleted objects). Also, the Event Manager must
be deleted before the display since the Event Manager maintains a pointer to the display.
Any objects attached to the event or window managers (e.g., UID_KEYBOARD,
UID_MOUSE, the “Hello World!” window, etc.) are automatically destroyed when their
respective manager is destroyed.

Run-time features

Once the application is running, you should see the following window on your display:

Hello, World!

Some of the best features of Zinc Application Framework are inherently available to
windows and the objects attached to them. For example, the following operations are
available using the keyboard:

Move—Press <Alt+F7> then use the arrow keys (up, down, left, right) to change the
window position. Press <Enter> to complete the move operation or <Esc> to cancel
the operation.

Size—Press <Alt+F8> then use the arrow keys (up, down, left, right) to change the

window size. Press <Enter> to complete the size operation or <Esc> to cancel the
operation.

Chapter 1 — Initializing the Library 19

Minimize—Press <Alt+F9> or <Alt -> to reduce the size of the window to the
minimum allowed by the UIW_WINDOW class object.

Maximize—Press <Alt+F10> or <Alt +> to increase the size of the window to
occupy the whole screen. Pressing either of these keys when the window is
maximized will cause the window to return to its original state.

Restore—Press <Alt+F5> to restore the window to its original size (i.e., before it
was minimized or maximized). This operation only works when the window is in a
maximized or minimized state.

Exit—Press <Alt+F4> to exit the program. This operation causes the window to be
removed from the screen and program execution to terminate.

In addition to the keyboard operations, the same operations described above may be
performed using a mouse:

Move—Press the left button down after positioning the mouse pointer over the title
bar. You can move the window by continuing to hold the left button down while
moving the mouse pointer across the screen. Window movement ends when the left
button is released.

Size—Press the left button down after positioning the mouse pointer on some area
of the border. (The mouse pointer will give information about the sizing directions.)
You can size the window by continuing to hold the left button down while moving
the mouse pointer across the screen. The window size operation ends when the left
button is released.

Minimize—Click the left button (down press then release) while the mouse pointer
is positioned on the minimize button to minimize the window.

Maximize—Click the left button while the mouse pointer is positioned on the
maximize button to maximize the window. Clicking the left button on the maximize
button while the window is in a maximized state will cause the window to return to
its previous size.

Restore—Click the left button while the mouse pointer is positioned on the maximize
button (if the window is in a maximized state) or double-clicking on the minimized
window (if the window is in a minimized state) to restore the original window size.
Exit—Double-click the left button while the mouse pointer is positioned on the

system button to exit the program.

Zinc Application Framework — Programming Techniques

This concludes the first “Hello World!™ tutorial. The next tutorial tells you how to add
the help and error window systems in Zinc Application Framework.

Chapter 1 — Initializing the Library 21

22

Zinc Application Framework — Programming Techniques

CHAPTER 2 - HELP AND ERROR SYSTEMS

Congratulations on completing the first tutorial, where you learned how to set up the basic
Zinc Application Framework elements. This tutorial extends the capabilities of the first
“Hello World!” tutorial to add an alternate program initialization technique using the
UI_APPLICATION class, windowed help and error systems, an exit function, and a
“World Information” window. The final outcome should be similar to the following:

Hello World Window
Hello, World!

| oA []

Weight: [B.[l sextillion metric tons. —I
Size: [24,901 .55 miles circumference. 7
Makeup: |oxygen -- 46.6%

gilicon -- 27 7%

aluminum -- 8.1%

iron -- 5.0%

calcium -- 3.6%

other -- 9.0%

The earth is the third planet in distance outward | &1
from the sun. It is the only planetary body inthe [0

solar system known to have conditions suitable
for life.

The code for this tutorial is located in \ZINC\TUTOR\HELLO\HELLO2.CPP.

Since this program is an extension of the original “Hello World!” program, only the new
components of it will be discussed in this tutorial. These new components are:

e Use of the UI_APPLICATION class

* Creation of the help system

Chapter 2 — Help and Error Systems 23

e Creation of the error system
e Addition of the exit function
e Addition of the “World Information” window

e Cleanup

The Ul_APPLICATION class

24

In the Hellol tutorial, we discussed the basic requirements for building an application
using Zinc Application Framework. When initializing a program, you must write a
main() function (or WinMain(), depending on the environment for which the application
is intended) and set up a display, an Event Manager and a Window Manager. The display
is environment-specific, just as the main() function is. To create a program that is
intended for multiple platforms means that there will necessarily be some non-portable
code for the main() function and the display.

In Hellol we saw how we can accommodate those requirements by using #if defined
statements around the platform-specific code. This approach, however, is not elegant and
is often hard to read. An alternative method for initializing a program is to use the
UI_APPLICATION class. This class sets up the display, the Event Manager and the
Window Manager and also provides a main() (or WinMain()) function. By letting the
UL_APPLICATION class take care of this environment-specific initialization for you, your
code becomes much cleaner and easier to read without losing its ability to be compiled
on different platforms. It also means less coding. The code below shows how the UI_-
APPLICATION class is used to initialize the Hello2 tutorial:

int UI_APPLICATION::Main(void)

{
// The UI_APPLICATION constructor automatically initializes the
// display, eventManager and windowManager variables.

// Redirect the window manager’s exit function.
windowManager->exitFunction = ExitFunction;

// Initialize the help and error systems.

UI_WINDOW_OBJECT: :errorSystem = new UI_ERROR_SYSTEM;

UI_WINDOW_OBJECT: :helpSystem = new UI_HELP_SYSTEM("hel lo.dat",
windowManager, HELP_GENERAL) ;

// Add two windows to the window manager.
UIW_WINDOW *windowl = HelloWorldWindowl () ;
UIW_WINDOW *window2 = HelloWorldWindow2 () ;
(void *)& (*windowManager

+ windowl

+ window2) ;

Zinc Application Framework — Programming Techniques

// This line assigns the exit function to be called before the main
// window is closed. It MUST be after the window is added to

// windowManager.

windowManager->screenID = windowl->screenlID;

// Wait for user response.
UI_EVENT event;
EVENT_TYPE ccode;
do
{
eventManager->Get (event, Q_NORMAL) ;
ccode = windowManager->Event (event) ;
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ;

// Clean up.
delete UI_WINDOW_OBJECT: :helpSystem;
delete UI_WINDOW_OBJECT: :errorSystem;

return (0);

}

The reference to the UI_APPLICATION class causes the module to be linked in, resulting
in the main() (or WinMain()) function being automatically provided. This main()
function creates in instance of UI_APPLICATION and calls its Main() function. The
constructor for the UI_APPLICATION class creates the display, the Event Manager and
the Window Manager as appropriate for the environment. The UI_APPLICATION::-
Main() function must be provided by the programmer—it is used for the program-
specific initialization.

The help system

The help system is used to present help information to the end user during an application
program. The help system uses the Zinc Application Framework windowing system to
present help information.

NOTE: Zinc Application Framework initially does not use the UI_HELP_SYSTEM so
that you are not forced to have the help system modules linked into your executable
program.

The following figure shows an example of a help system window:

Chapter 2 — Help and Error Systems 25

he zecond "Hello, World tutorial s . create to
windows using Zinc Application Framework and how to initialize the
help and error systems.

IFor more information about one of the windows presented in this
lapplication press <F1> while the window is at the front of the
display.

Press <Alt-F4> to continue...

The help window system is included by adding the following code to the tutorial program:

UI_WINDOW_OBJECT: :helpSystem = new UI_HELP_SYSTEM("hello.dat",
&windowManager, HELP_GENERAL) ;

The help window system constructor arguments are:

e hello.dat is the name of the binary help file (generated from an ASCII text file using
GENHELP.EXE or produced from the interactive designer).

» windowManager is a pointer to the Window Manager. This argument is used to
display information if an error is encountered while initializing the help system.

e HELP_GENERAL is the name of the help context that will be used if no other help
context is specified when help is requested.

Notice that not only must you create a help system class object, but you must also assign
it to the UL_ WINDOW_OBJECT member variable helpSystem.

Objects make requests to the help system whenever help is requested by an end-user
during an application. This interaction is represented in the figure below:

26 Zinc Application Framework — Programming Techniques

K\
UI_WINDOW_OBJECT ———» UI_HELP_SYSTEM

other derived help systems

This flow of interaction can be outlined as follows:

1—The window calls the help system with a message:
EVENT_TYPE UI_WINDOW_OBJECT: :Event (const UI_EVENT &event)

{

case L_HELP:
// Display help for the current window.
helpSystem->DisplayHelp (windowManager, helpContext) ;
break;

The arguments used by the help system are:

* windowManager, which is a pointer to the Window Manager that will be used
to display the help information on the screen.

* helpContext, which specifies the help information to be displayed.

2—The help system attaches its help information window to the screen via the
Window Manager:

void UI_HELP_SYSTEM: :DisplayHelp (UI_WINDOW_MANAGER *windowManager,
HELP_CONTEXT helpContext)
{

*windowManager + helpWindow;

If the help window is already visible on the screen, its title and help text are updated
to reflect the current help context.

Chapter 2 — Help and Error Systems 27

3—Program flow continues as normal. The help window is now present on the
screen and will receive all input messages, as long as it is the current window.

The help information associated with a window is created in an ASCII text file. This
tutorial uses the HELLO.TXT file to store the following help information:

--- HELP_GENERAL

General help

The second "Hello World!" tutorial shows you

how to create two windows using Zinc Application
Framework and how to initialize the help and error
systems.

For more information about one of the windows
presented in this application press <Fl> while
the window is at the front of the display.

Press <Alt+F4> to continue...

--- HELP_HELLO_WORLD
Hello World

—--- HELP_WORLD_INFORMATION
World Information

Each help context contains the following elements:

Help context name—This name is converted to a C++ constant and specifies the
help context index referenced in your code. This name must be preceded by "---",
which is used as a parsing token. (The first help context name above is HELP_-
GENERAL.)

Help context title—The title is used at the top of the help window as its title field.
It should be a descriptive string that tells what help context is being viewed. (The
first help context title above is “General Help.”)

Help information—The help information is text that is displayed in the body of the
help window. It should contain all the help information needed to describe the

particular help being requested.

The ASCII help text file is converted using the GENHELP.EXE utility (located in the
\ZINC\BIN directory). To convert the “Hello World!”" help file, type:

genhelp hello.txt hello.dat <Enter>

The help generation program performs the following operations:

Zinc Application Framework — Programming Techniques

Creates a HELLO.DAT file—This file contains the help information along with help
contexts. This file is stored in binary form and should not be modified by the
programmer. It is the only file (in addition to the executable file) used during the
application. (You do not need to ship the .HPP or .TXT file with your application.)

Creates a HELLO.HPP file—This file contains the C++ definitions for the help
contexts.

The generated HELLO.HPP file is shown below:

#ifdef USE_HELP_CONTEXTS

fidefine HELP_GENERAL 1 // General help.
#define HELP_HELLO_WORLD 2 // Hello World.
#define HELP_WORLD_INFORMATION 3 // World Information.
#endif

You must include the application .HPP file in all modules that make reference to help
indexes. The HELLO2.CPP file has the following modified include file list:

#include <ui_win.hpp>
#define USE_HELP_CONTEXTS
#include "hello.hpp"

The error system

The implementation of the error system is very similar to that of the help system in that
a stub is provided as the default by Zinc Application Framework. In addition, also similar
to the help system, an error window system can be defined that will override the default
stub. The figure below shows an example of an error window:

The date, “Jaan 3, 92', has an invalid month.

The default error system is overridden by re-defining the error system variable in the
following manner:

UI_WINDOW_OBJECT: :errorSystem = new UI_ERROR_SYSTEM;

The flow of control with the error system is outlined as follows:

Chapter 2 — Help and Error Systems 29

1—A window object calls the error system. In the example shown above, UIW_-
DATE is the window object that calls the error system with an error message from
its error message table.

int UIW_DATE::Validate(int processError)
{

for (int i = 0; errorTable[i].message; i++)
if (errorTable[i].errorCode == errorCode)
{
errorSystem->ReportError (windowManager, WOS_INVALID,
errorTable[i] .message, stringDate, range);
break;
}

2—The error system attaches a modal error window to the screen display:

UIS_STATUS UI_ERROR_SYSTEM::ReportError(UI_WINDOW_MANAGER
*windowManager, UIS_STATUS errorStatus, char *format, ...)
{

*windowManager + window;

Modal windows prevent the end-user from interacting with any window other than
the current window—in this case the error window—until the window is closed.
Since the error window is modal, it will receive all event information until it is
closed.

3—Once a method of correction is selected (either “OK” or “Cancel”’—available
on some windows) the error system returns the selection to the object where the error
occurred. Consequently, the error window is removed.

4—The object that sent the error request processes the error response and program
flow continues.

Exit function

30

When a program is about to terminate execution, it is sometimes desirable to perform
special cleanup or to inform the user that the program will exit. To facilitate this, UI_-
WINDOW_MANAGER has a special member variable, exitFunction (passed as a para-
meter), which is a user function that is called when the Window Manager receives an
L_EXIT or L_EXIT_FUNCTION message.

The following window is displayed when <Alt+F4> is pressed:

Zinc Application Framework — Programming Techniques

This will close "Hello World".

The exit function can have any function name, but must have the following declaration:

static EVENT_TYPE ExitFunction(UI_DISPLAY *display,
UI_EVENT_MANAGER *eventManager, UI_WINDOW_MANAGER *windowManager)

This declaration allows the exit function to have pointers to the current display, Event
Manager and Window Manager. The exit function must be declared to be a static so that
its address may be taken at compile time.

In the example above, an “OK” button and a “Cancel” button are displayed. These
buttons have the BTF_SEND_MESSAGE flag set. The purpose of this flag is to create
an event that has the type field set to the button’s value and then to put the new event
onto the event queue. When the “OK” button is pressed, an L_EXIT message is placed
on the event queue and the application ends. When the “Cancel” button is pressed, the
S_CLOSE message is sent and the current window (i.e., exit function window) is closed.
The following code shows the implementation of this exit function:

static EVENT_TYPE ExitFunction(UI_DISPLAY *display, UI_EVENT_MANAGER *,
UI_WINDOW_MANAGER *windowManager)
{

int width = 42;
int height = 7;
int left = (display->columns / display->cellwWidth - width) / 2;
int top = (display->lines / display->cellHeight - height) / 2;
UIW_WINDOW *window = new UIW_WINDOW(left, top, width, height,
WOF_NO_FLAGS, WOAF_MODAL | WOAF_NO_SIZE) ;
*window
+ new UIW_BORDER
+ &(*new UIW_SYSTEM_BUTTON
+ new UIW_POP_UP_ITEM("&Move", MNIF_MOVE)
+ new UIW_POP_UP_ITEM("&Close\tAlt+F4", MNIF_CLOSE))
+ new UIW_TITLE("Hello World Tutorial");

if (display->isText)
*window
+ new UIW_PROMPT (4, 1, "This will close \"Hello World\".");
else
*window
+ new UIW_ICON(2, 1, "ASTERISK")
+ new UIW_PROMPT(8, 1, "This will close \"Hello World\".");

Chapter 2 — Help and Error Systems 31

*window

+ new UIW_BUTTON(9, 4, 10, "~OK", BTF_NO_TOGGLE | BTF_AUTO_SIZE |
BTF_SEND_MESSAGE, WOF_JUSTIFY_CENTER, NULL, L_EXIT)
+ new UIW_BUTTON (21, 4, 10, "~Cancel", BTF_NO_TOGGLE | BTF_AUTO_SIZE

| BTF_SEND_MESSAGE, WOF_JUSTIFY_CENTER, NULL, S_CLOSE) ;
*windowManager + window;
return (S_CONTINUE) ;

Multiple windows

The first tutorial presented the following window created with the accompanying code:

,

// Create the hello world window.
UIW_WINDOW *window = new UIW_WINDOW(5, 5, 40, 6);

// Add the window objects to the window.
*window
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON
new UIW_TITLE ("Hello World Window")
new UIW_TEXT(0, 0, 0, 0, "Hello World!", 256, WNF_NO_FLAGS,
WOF_NON_FIELD_REGION) ;

+ o+ + + o+

To simplify the code associated with this window, we introduce the concept of “Generic”
static functions. Two high level Zinc Application Framework objects have a Generic()
function: UTW_WINDOW and UIW_SYSTEM_BUTTON. The UIW_WINDOW::-
Generic() member function automatically creates a window with a border, maximize
button, minimize button, system button and title. The following function shows how we
can replace this code:

static UIW_WINDOW *HelloWorldwWindowl ()
{
// Create the standard Hello World! window.
UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6,
"Hello World Window", NULL, WOF_NO_FLAGS, WOAF_NO_FLAGS,
HELP_HELLO_WORLD) ;

32 Zinc Application Framework — Programming Techniques

// Add the window objects to the window.
*window
+ new UIW_TEXT(0, 0, 0, 0, "Hello World!", 256,
WNF_NO_FLAGS, WOF_NON_FIELD_REGION) ;

// Return a pointer to the window.
return (window) ;
}

Using this method, the new operator is not required for window creation. The UIW._-
WINDOW::Generic() function actually calls the new operator for the UIW_WINDOW
class object, as well as for all the default objects attached to the window. It then returns
a pointer to the UIW_WINDOW class object.

The window created above contains a non-field region text object. This means that the
text object occupies all of the remaining space of the window not taken by the previously
added window objects (border, buttons and title). Under normal circumstances, a non-
field region object takes up the entire remaining window space and any field region
objects will be covered up. However, more than one non-field region object may reside
with field region objects within a single window. This is an advanced concept and is not
addressed in this tutorial. (See the example program BIO.CPP.)

Field window objects do not set the WOF_NON_FIELD_REGION flag. These types of
window objects are generally used to present several pieces of information in an organized
manner.

The “World Information” window created in this program is an example of a window

that uses field window objects to display information. This window and its code
implementation is shown below:

Chapter 2 — Help and Error Systems 33

Hello World Window

Hello, World!

Age: |At least 4 1/2 billion years. |
Weight: 6.0 sextillion metric tons. |
Size: |27.9m .55 miles circumference. |

Makeup: |oxygen -- 46.6%
silicon - 27.7%
aluminum -- 8.1%
iron -- 5.0%
calcium -- 3.6%
other -- 9.0%

The earth is the third planet in distance outward
from the sun. It is the only planetary body in the
golar system known to have conditions suitable
for life.

static UIW_WINDOW *HelloWorldwindow2 ()

// Create the world information window.

UIW_WINDOW *window = UIW_WINDOW::Generic(5, 5, 52, 15,
"World Information Window", NULL, WOF_NO_FLAGS, WOAF_NO_STIZE,
HELP_WORLD_INFORMATION) ;

// Add the window objects to the window.
*window

+
+

S
%

34

new
new

new
new

new
new

new

UIW_PROMPT (2, 1, "Age:")

UIW_STRING(12, 1, 36, "At least 4 1/2 billion years.",
UIW_PROMPT (2, 2, "Weight:")

UIW_STRING(12, 2, 36, "6.0 sextillion metric tons.", 50)
UIW_PROMPT (2, 3, "Size:")

UIW_STRING(12, 3, 36, "24,901.55 miles circumference.",

UIW_PROMPT (2, 4, "Makeup:")

& (*new UIW_VT_LIST(12, 4, 20, 4,
WNF_NO_WRAP | WNF_SELECT_MULTIPLE)

%

+ o+ + +

new UIW_STRING(0, 0, 0, "oxygen -- 46.6%")
new UIW_STRING(0, 0, 0, "silicon -- 27.7%")
new UIW_STRING(0, 0, 0, "aluminum -- 8.1%")
new UIW_STRING(0, 0, 0, "iron -- 5.0%")

new UIW_STRING(0, 0, 0, "calcium -- 3.6%")
new UIW_STRING(0, 0, 0, "other -- 9.0%"))

50)

50)

Zinc Application Framework — Programming Techniques

+ &(*new UIW_TEXT(2, 8, 46, 4,
"The earth is the third planet in distance "
"outward from the sun. It is the only "
"planetary body in the solar system known to "
"have conditions suitable for life.", 2048)
+ new UIW_SCROLL_BAR(O, 0, 0, 0, SBF_VERTICAL));

// Return a pointer to the window.
return (window) ;

Notice the difference between the code used to create the text object in the first window
(1) and that used to create this window (2):

new UIW_TEXT(0, 0, 0, O,
"Hello World!", 256, TXF_NO_FLAGS,
WOF_NON_FIELD_ REGION) ;
new UIW_TEXT(2, 8, 46, 4,
"The earth is the third planet in distance "
"outward from the sun. It is the only "
"planetary body in the solar system that has "
"conditions suitable for life, at least known "
"to modern science.", 2048, WNF_NO_FLAGS, WOF_BORDER) ;

The second code sample defines a position and size indicator and does not set the WOF_-

NON_FIELD_REGION flag. Instead, it uses WOF_BORDER to display the boundaries
of the field’s region.

Program flow

Now that the help system, error system and world windows have been added, let’s look
at the initial program flow:

Chapter 2 — Help and Error Systems 35

36

Cursor Keyboard Mouse

e

‘ Ul_EVENT_MANAGER J

b
C MAIN PROGRAM CONTROL)
e
Ul_WINDOW_MANAGER J
‘ UI_HELP_SYSTEMJ Hello World Window é

World Information Window
ﬁ I_ERROR_SYSTEM‘

Notice that this program flow is the same as that discussed in the previous tutorial, except
that there are two windows on the screen instead of one. This flow remains unchanged
until an error occurs or until help is requested. When the help or error system adds its
window to the screen, the Window Manager changes its control to allow interaction with
the third window:

Zinc Application Framework — Programming Techniques

Cursor Keyboard Mouse

B

UI_EVENT_MANAGER ‘

Cleanup

s

L MAIN PROGRAM CONTROL j
e v
‘ UI_WINDOW_MANAGER —]

Ul_HELP_SYSTEM Hello World

’UIHERROR_SYSTEMJ

Help Window

Since new help and error window systems were created within the program, they must be
destroyed at the end of the application. Although they are members of UL WINDOW _-
OBJECT, they must be destroyed explicitly since they are static.

// Clean up.

delete
delete
delete
delete
delete

UI_WINDOW_OBJECT: :errorSystem;
UI_WINDOW_OBJECT: :helpSystem;
windowManager;

eventManager;

display;

Run-time features

The first screen that appears when you run the application should be similar to the

following:

Chapter 2 — Help and Error Systems 37

38

Hello World Window
Hello, World!

Age: |At least 4 1/2 billion years. J

Weight: [6.0 sextillion metric tons. I

Size: |§,9m .55 miles circumference. J

Makeup: |oxvgen -- 46.6%
silicon - 27.7%
aluminum -- 8.1%
iron -- 5.0%
calcium -- 3.6%
other -- 9.0%

The earth iz the third planet in distance outward
from the sun. It iz the only planetary body in the
solar system known to have conditions suitable
for life.

The added run-time features of this tutorial program are:

Field movement—Either select the window object with the mouse (by clicking the
left mouse button while positioned over the object) or press:

e <Tab> to move to the next field on the window.

e <Shift+Tab> to move to the previous field on the window.

Select—Position the mouse pointer on top of a window, then click the left button to
select a new current window. To select a new current window from the keyboard,
press <Alt+F6>.

Restore, Maximize, Minimize, Move, Size and Close—The system button created
in the UTW_WINDOW::Generic() function allows you to select these options

directly from a menu. Position the mouse pointer on top of the system button and
click the left button to make the menu appear. Then select the desired option from

Zinc Application Framework — Programming Techniques

the menu by clicking on it. To select this button from the keyboard, press <Alt . >
or <Alt+space>.

Delete window—Press <Alt+F4> to delete the top window. This will delete the top
window but still allows the application to continue running as long as there is at least
one window on the screen.

This concludes the second tutorial program in this section. The next tutorial demonstrates

how Zinc’s Interactive Designer can be used to reduce the code information associated
with windows and sub-window objects.

Chapter 2 — Help and Error Systems

40 Zinc Application Framework — Programming Techniques

CHAPTER 3 - USING ZINC DESIGNER

The third “Hello World!” tutorial lets us take a step back to see how window creation
can be accomplished in a manner of minutes (and a single line of code) using Zinc
Designer. The code for this tutorial is located in \ZINC\TUTOR\HELLO\HELLO3.-
CPP.

Zinc Designer lets you create windows interactively and then incorporate them into your
program. The interactive designer is located in \ZINC\BIN\DESIGN.EXE. To invoke
this program, first make sure you have \ZINC\BIN in your PATH environment variable,
then type:

design <Enter>

Once the application is running, the following window should be visible on the screen:

Creating a file

The following steps are used to create a file that will store the “Hello World!”” windows:

1—Select “File” from the main control menu. Selecting this option causes the
following pop-up menu to be displayed:

Chapter 3 — Using Zinc Designer 41

Edit Resource Object Utilities Help

EVETE | |

gpen‘...
Save
Save As...

Delete... None

Preferences...

Exit

2—Select “New..” from the pop-up menu. After you select this item a new window
appears:

File Name || J

Directory: j\design
Drives: Directories: Files:
= .. design.dat

3—Enter the file name by typing hello in the field adjacent to the “File name”
prompt.

This is the file name used when the world windows are saved to disk.
4—Create the file by selecting the “OK” button.

Zinc Application Framework — Programming Techniques

Once the OK button has been selected, Zinc Designer does the following:
¢ creates a HELLO.DAT file that will be used to store the “Hello World!” windows
¢ removes the “New” window from the screen

* updates the control window’s title to reflect the active HELLO.DAT file.

Creating a window

The window we created in the second “Hello World!” tutorial was:

Hello, orld!

This window is created interactively in the following steps:

1—Select “Resource” from the main control menu. Selecting this option causes the
following pop-up menu to be displayed:

File Edit NAESOMASE" Objcct Utilitics Help

[e [[[~ e |

Delete...
Test...

Chapter 3 — Using Zinc Designer 43

44

2-Select “Create” from the pop-up window. At this point a generic window appears
on the screen:

3—Size the window by pressing <Alt+F8> and using the arrow keys or by pressing
the left mouse button on an area of the window’s border. You should make the
window large enough to handle the new title information and default “Hello World!™
text.

4—Enter an identification for the window by selecting Edit | Object from the main

control menu or by double clicking the left mouse button on the window. Selecting
this option causes the window editor to be displayed:

Zinc Application Framework — Programming Techniques

title:

---Options---
[Border

minlcon:
l i) [Maximize Button
Minimize Button
stringlD: |F|ES[]UF|IIE_1 [System Button
helpContext: I[None] [5";'::9;-I-J-HDEH
Objects: [] WOF_MINICELL

[[] wOF_NON_FIELD_REGION
[] WOF_NON_SELECTABLE
---wofdvancedFlags---

5—Enter Hello World wWindow in the “title:” field.

6—Enter the window identification by typing HELLO_WORLD_WINDOW in the
“stringID:” field.

7—Save the identification by selecting the “OK” button.

Your window should now look similar to the figure below:

Chapter 3 — Using Zinc Designer 45

Creating a window object

Creation of the “Hello World!” text is similar to the window creation described above:
1—Select Object | Input | Text from the main control menu.

2—Place the text object in the middle of the “Hello World!” window. Your window
should now have a text field within its border:

3—Change the default information associated with the text object by:

o calling the text object editor (by double-clicking the left mouse button on the text
object)

* typing Hello World! in the field adjacent to the *‘text:” prompt
* typing 256 in the field adjacent to the “maxLength:” prompt

e toggling the WOF_BORDER and WOF_AUTO_CLEAR object flags from on to
off

e selecting the WOF_NON_FIELD_REGION object flag (this will cause the text
field to fill the entire window)

The text editor should now look like the figure below:

46 Zinc Application Framework — Programming Techniques

---options---

[] Vertical Scroll Bar

[] Horizontal Scroll Bar
---wnFlags---

] WNF_ND_WRAP

i ---woFlags---

[] wOF_AUTO_CLEAR

[] wOF_BORDER

j [] WOF-INVALID

[] WOF_MINICELL
WOF_NON_FIELD_REGION
stringlD: [FIELD_1 | |0 woF_NoN_SELECTABLE
helpContext: [(None) _ [® |0 wor_unaNSwERED

text: Hello, World!]

userFunction: |

Once you save the new text information, the window should look like the window we
created in the first “Hello World!”’ tutorial:

ello, World!

Chapter 3 — Using Zinc Designer 47

Creating additional windows

The world information window, created in the second ‘‘Hello World!” tutorial was:

6.0 sextillion metric tons.

24,901.55 miles [equatorial circumf

oxygen — 46_6%
silicon — 27.7%
aluminum — 8.1%
iron—5.0%
calcium — 3.6%
other — 9.0%

The earth is the third planet in distance
outward from the sun. Itis the only
planetary body in the solar system
known to have conditions suitable for life.

The steps used to create this window are:

1—Create the window by selecting Resource | Create from the control menu. Make
sure the window is large enough so that the accompanying field information fits
within the window’s border.

2—Change the window title (in the window editor) to read Wor1ld Information
Window.

3—Change the window identification by calling the window editor and entering
WORLD_INFORMATION_ WINDOW as the stringlD.

48 Zinc Application Framework — Programming Techniques

4—Select “Ok” to exit the window editor.

5—Create the age prompt by selecting Object | Static | Prompt from the control menu
and place the field at the left-top corner of the window. Call the prompt editor, from
the window’s edit window, and enter Age: as the prompt’s text.

6—Create the age string field by selecting Object | Input | String from the control
menu and place the field next to the age prompt. Double click, on the object, with
the mouse. Enter 50 as the default length for the string field and enter At least
4 1/2 billion years as the string’s text.

7—Create the weight prompt by selecting Object | Static | Prompt from the control
menu and place the field under the age prompt. Change the prompt’s text to
Weight:.

8—Create the weight string field by selecting Object | Input | String from the control
menu and place the field next to the weight prompt. Enter 50 as the default length
for the string and enter 6.0 sextillion metric tons as the string’s text.

9—Create the size prompt by selecting Object | Static | Prompt from the control menu
and place the field under the weight prompt. Enter Size: as the prompt’s text.

10—Cereate the size string by selecting Object | Input | String from the control menu
and place the field next to the size prompt. Set the length for this object to be 50
and enter 24,901.55 miles (equatorial circumference) as the string’s
text.

11—Create the makeup prompt by selecting Object | Static | Prompt from the control
menu and place the field under the size prompt. Set the prompt’s text to be
Makeup:.

12—Create the makeup list box by selecting Object | Control | Vt-List from the
control menu and place the field next to the makeup prompt.

13—Each makeup item is created by selecting Object | Input | String from the control
menu. After you select this option, place the object anywhere inside the list by
clicking on the list box with the mouse. The list automatically provides a default
position and size for the newly created item. Additional information can be edited
using the string editor.

The only information you need to change is the default text associated with each
makeup item. The text for the first item is oxygen -- 46.6%.

Chapter 3 — Using Zinc Designer 49

Each additional makeup item should be added in a similar manner. The following
items were provided in the original world information window:

e silicon --27.7%
e aluminum -- 8.1%
e iron -- 5.0%

e calcium -- 3.6%

e other -- 9.0%

14—Create the world information text field by selecting Object | Input | Text from
the control menu, then place the field under the makeup list. The default length for
this field is 256 and the default text is The earth is the third planet

in distance outward from the sun. It is the only planetary
body in the solar system known to have conditions suitable
for life. To add a vertical scroll bar to the text field, check the “Vertical Scroll

Bar” checkbox under the “---options---"" heading of the vertical list.
15—Press the “OK” button to complete the changes to the window.

You have now completed the creation of the “Hello World!” information window.

Saving the file

The “Hello World!” windows are saved when you select File | Save from the control
menu. Zinc Designer performs the following operations when the windows are saved:

A HELLO.DAT file is updated—This file contains the binary information associated
with the objects saved during the design session. You may recall the second tutorial

where we created a help file. Help contexts and window objects reside in the same
.DAT file.

A HELLO.CPP file is created—This file contains the definition for the objectTable.
This structure provides read access points for objects saved to disk. The entries
inside this table depend on the types of objects that were created in the designer.

A HELLO.HPP file is created—This file contains the numeric identifications (ID’s

associated with those strings you entered next to the “stringID”” prompt) and the help
context definitions. The string identification for each field within a window is

50 Zinc Application Framework — Programming Techniques

unique. The items within sub-windows, combo boxes or list boxes have unique
numeric identifications within that scope.

Window access

The code used in this tutorial has the same initialization process as each preceding tutorial
in that they all follow the same three steps:

e Create the display
* Create the Event Manager and add input devices
e Create the Window Manager

After the Window Manager is created, however, the program adds the two world
information windows to the Window Manager:

*windowManager
+ new UIW_WINDOW("hello.dat HELLO_WORLD_WINDOW")
+ new UIW_WINDOW("hello.dat~WORLD_INFORMATION_WINDOW");

In the code above, HELLO_WORLD WINDOW and WORLD_INFORMATION_-
WINDOW are retrieved from the HELLO.DAT data file and then are added to the
Window Manager.

An alternative way of reading the objects from disk is shown below:

*windowManager
+ UI_WINDOW_OBJECT: :New ("hello.dat “HELLO_WORLD_WINDOW")
+ UI_WINDOW_OBJECT::New("hello.dat"WORLD_INFORMATION_WINDOW");

This method allows for error correction. If, for example, one of the windows was not
found in the file, New() will return a NULL value. When a NULL value is added to the
Window Manager, no change is made.

The cleanup associated with this program is the same as that of the previous tutorials.
As you may recall, the designer created a HELLO.CPP code file. This file must be

compiled and linked with the Hello3 program. It contains an essential object table which
is used by window object constructors to read class object information from the data file.

Chapter 3 — Using Zinc Designer 51

Run-time features

52

The run-time features associated with this tutorial are the same as that of previous
tutorials. The persistent window objects contain all the information necessary to ensure
that the application runs as if each object were created with the code shown in previous
tutorials.

This concludes the final tutorial program in this section. The next section describes the

transition from C programming to C++ programming and how to implement C++
programs using Zinc Application Framework.

Zinc Application Framework — Programming Techniques

SECTION I
DICTIONARY

Section Il — Dictionary 53

54

Zinc Application Framework — Programming Techniques

CHAPTER 4 — WHAT IS THE OBJECT OF C++?

Now that you have completed the “Hello World” tutorials, let’s step back and take a look
at what an object-oriented language (i.e., C++) has to offer. Any C program may be a
C++ program since C++ is a superset of C, but any C++ program is not a C program.
C is a very powerful language with proven strong points. C++ utilizes these strong points
and combines them with the advantages of an object oriented paradigm.

A simple dictionary program has been created, first in C and then in C++, to illustrate the
differences between the two languages. WORD1A.EXE is the C version and WORD1B.-
EXE is the C++ version. (NOTE: These two programs are DOS only programs). After
completing this tutorial, you should be able to understand:

* classes

e data hiding

* constructors and destructors

* inheritance and deriving classes
* function overloading

* operator overloading

* local variable declaration

¢ dynamic variable initialization.

The code for the “Word” tutorial programs is located in \ZINC\TUTOR\WORD. (See
“Chapter 1—Initializing the Library” for information on compiling for each Zinc-
supported platform.)

Once the Word1 programs have been compiled, they can be run by typing the program
name followed by the word to be looked up in the dictionary. Since this is a tutorial,
there are only four words available: bad, begin, end and good. To run these
programs type the following at the command line:
WORD1A good
or
WORD1B good

and then press return. You should see the following printed on. the screen:

good - Having positive or desirable qualities.
synonyms - generous, kind, honest.
antonyms - bad, poor, adverse.

Chapter 4—What is the Object of C++? 55

Discovering objects

56

The purpose of any object-oriented language is to provide a logical means of code and
data encapsulation. In C++, this is accomplished with an object known as a class. A
class is a user defined type structure. Although it may seem strange to think of a type
structure as containing code, this is the heart of C++, and it is very powerful. Before we
study classes, let’s take a look at the file WORD1A.H, the header file from the C
program.

typedef struct
{

char string[64];
} SYNONYM, ANTONYM;

typedef struct WORD_STRUCT
{

char string[64];

char definition([1024];

int synonymCount;

SYNONYM synonym[10];

int antonymCount;

ANTONYM antonym([10];
} WORD;

The preceding C structure declarations are useful in that they encapsulate the data for the
dictionary word entries. The problem with this type of programming is that there is no
functionality directly associated with the data in this structure. Now let’s take a look at
the C++ version:

class D_WORD : public UI_ELEMENT
{
public:
char *string;
char *definition;
WORD_LIST antonymList;
WORD_LIST synonymList;

D_WORD(FILE *file);

~D_WORD (void) { delete string; delete definition; }
D_WORD *Next (void) { return ((D_WORD *)next); }
void Print (void) ;

}i

Notice that the C++ version of the word structure uses the keyword class. The first line
of the class declaration gives the class name, D_WORD, and the inheritance list. The
inheritance list will be described later on in this chapter. Classes provide a more logical
association between code and data since they are both members of the same structure.

The functions listed in a class declaration are actually just function prototypes. When one

of these member functions is implemented, it must specify that it is part of the class. For
example, consider the implementation of the function Print():

Zinc Application Framework — Programming Techniques

void D_WORD: :Print (void)
{

}

The first line of the function Print lists the following items: the return type, the class
name, the scope resolution operator (i.e., ::), the function name and the parameter list.
The class name followed by the :: is listed to tell the compiler that the function is a
member of the D_WORD class.

Data hiding

After the opening curly brace, in the declaration of the class D_WORD, the line public:
appears. The keyword, public, denotes the level of data hiding. Members within a class
may be declared as public, protected or private. Since the default data hiding level is
private, public has been specified in order to make the data and functions accessible
outside of the class.

Public class members are available to any function that has a pointer to an instance of the
D_WORD class. Protected class members may only be used by functions within the same
class and by functions within derived classes. Private members may only be used by
other member functions and members of friend classes.

Constructors and destructors

When an instance of a class is created, it is sometimes desirable to initialize certain
member variables. This is done with a special type of member function called a
constructor. A constructor automatically gets called when an instance of the class is
created. Although the constructor may receive parameters, in C++ it cannot have a return
value. A class constructor is easily identified, because it has the same name as that class.
The class D_WORD is a good example.

class D_WORD : public UI_ELEMENT
public:

char *string;
char *definition;

D_WORD(FILE *file);
~D_WORD(void) {delete string; delete definition;}

Yi

Chapter 4—What is the Object of C++? 57

The complement of a constructor is the destructor. This function is automatically called
when an instance of a class is deleted. Destructors are useful functions, because they
allow actions to occur, such as freeing memory, when the class is destroyed. A destructor
can be easily identified, because it has the same name as the class with the exception that
it is preceded by a ‘~’.

Why use classes?

58

The following loop, taken from inside the main function in the file WORD1A.C, is used
to read a word from the dictionary, compare it to the search word and print it out.

while (!feof (file))
{
ReadWord (file, &word) ;
if (!strcmp(word.string, argv(1l]))
{
PrintWord (&word) ;
break;

}

The loop must be present in order for the operation to work correctly. While this
implementation does the job and is fairly easy to read, C++ allows you to construct
objects (i.e., classes) that contain the data and functions necessary to find and print a
word. Consider the following C++ version of the above code:

// Create the dictionary.
DICTIONARY dictionary;

// Search for a word match.
D_WORD *word = dictionary.Get (argv[l]);
if (word)
word->Print () ;
else
printf ("The word \"%s\" could not be found.\n");

The DICTIONARY class has a member function called Get() that is used to find a word
that matches its character string parameter. Get() returns a pointer to a D_WORD class
that uses one of its member functions, Print(), to print the appropriate data on the screen.
This way D_WORD knows how to print itself, and you, as the programmer, just need to
tell it to do so. By using classes, a program can be more logically organized into objects
that utilize member functions to perform specific tasks.

Zinc Application Framework — Programming Techniques

Deriving classes/inheritance

Once an object has been created, it is possible to expand it without modifying the original
class. This process is known as deriving a class. The derived class will inherit all of the
public and protected attributes and functions of the base class. A good example of this
is found in WORD1B.HPP. Consider the following:

class D_WORD_LIST : public UI_LIST
{

public:
static int FindWord(void *element, void *matchData)
{+:0}
D_WORD *First(void) { return ((D_WORD *)first); }
}i

class DICTIONARY : public D_WORD_LIST
{
public:

int found;

DICTIONARY (void) ;

D_WORD *Get (const char *word) {...}
}:

An inheritance list is specified, after the “:”, on the first line of the class definition. The
class DICTIONARY has been derived from the base class D_WORD_LIST.
DICTIONARY is said to inherit D_WORD_LIST. When the inheritance list is declared,
the same levels of data hiding apply as in the body of the class definition. In this case,
the base class was declared as public, which means that the public members of the base
class will be publicly accessible in the derived class.

Derived classes are very useful, since they can be tailored to fit special situations without
having to create a whole new class or modifying the original. In the classes declared
above, the class D_WORD_LIST is a special type of UL_LIST and the class DICTION-
ARY is a special type of D_WORD_LIST. The following diagram illustrates the
relationship between these three classes:

Chapter 4—What is the Object of C++? 59

UI_LIST

D_WORD_LIST

DICTIONARY

Function overloading

C-++ supports polymorphism, also known as overloading, which allows one name to be
used for different, yet similar purposes. Overloaded functions are functions that have the
same name, but different parameters. For example, let’s take a look at the Get()
functions in the UI_LIST class from the file LIST.HPP:

UI_ELEMENT *Get (int index) ;
UI_ELEMENT *Get (int (*findFunction) (void *elementl, void
*matchData), void *matchData);

These two functions both return a pointer to a particular UL_ELEMENT, but the method
that they use and the parameters they require are different. The compiler distinguishes
overloaded functions by their parameter lists. Overloading functions allows you to create
a generic type of operation while the individual functions define the exact method to be
used.

Operator overloading

60

The operators in C++ can be overloaded in much the same way that functions can. One
use for overloaded operators is with a linked list class. The program WORD1B.EXE
uses a linked list class called UI_LIST that implements overloaded operators. For
example:

UI_LIST &operator+(UI_ELEMENT *element) { ... };
UI_LIST &operator-(UI_ELEMENT *element) { ... };

The °+ and -’ operators have been overloaded to perform add and subtract operations
on the linked list. It is important to note that the original operators have not been
disabled. For example, the line of code "int count = 3 + 9;" will still perform a

Zinc Application Framework — Programming Techniques

summation and assign the result to the variable count. As with function overloading, the
operands will allow the compiler to differentiate which function is called. Here is an
example of how to use these operators:

UI_LIST list;
UI_ELEMENT element;

list + &element;

This use of overloaded operators provides for a much more intuitive piece of code.

Local variables

Local variables in C must be declared at the start of the current block. As an example,
let’s look at the function main in the C file WORD1A.C:

main (int argc, char *argvl[])
i

WORD word;

FILE *file;

// Make sure there is a word.

if (argc < 2)

{
printf ("Usage: WORDI1A <word>\n");
return(0) ;

}

// Make sure the dictionary exists.
file = fopen("word.dct", "rt");

}

Notice that the variable file must be declared at the start of the current block even though
it is not used until later. If this variable were declared in the middle of the block where
it is used, it would cause an error in C.

In C++, variables may be declared as they are needed. This conforms more closely to the
idea of data encapsulation that was mentioned earlier. Now let’s examine the C++ main
function, taken from WORD1B.CPP:

main(int argc, char *argv[])

{
// Make sure there is a word.
if (argc < 2)

printf ("Usage: WORD1B <word>\n");
return (0) ;

Chapter 4—What is the Object of C++7? 61

}

// Create the dictionary.
DICTIONARY dictionary:;

if (!dictionary.found)

{

}

// Search for a word match.
D_WORD *word = dictionary.Get(argv[l]);

}

This C++ example shows two very important concepts: local variable declaration and
dynamic initialization. As has already been mentioned, variables in C++ may be declared
where they are used and not just at the top of the current block.

Any local and global variables in C++ can be dynamically initialized using any valid
expression. For example, the variable word, from the above piece of code, is initialized,
at run-time, with the return value from a call to dictionary.Get(). This is very different
from C which requires that a variable’s initial value be known at compile time. Dynamic
initialization will allow a variable to be initialized based on the value of another variable
or on the return value of a function.

Conclusion

You should now be familiar with the major differences between C and C++. If you
implement the ideas that were discussed in this chapter, you will be on your way to
writing concise, easily maintainable and powerful code.

62 Zinc Application Framework — Programming Techniques

CHAPTER 5 - EVENT FLOW

This tutorial demonstrates how Zinc Application Framework can be used to enhance an
existing C++ program and how events are handled throughout the system. When you are
finished, you should understand:

e how a window and its fields are created

* the use of window objects to display information and receive input from the user

* the use of user functions to check data input

* how events are handled throughout the system

In this tutorial, we will examine a modified version of the dictionary program that was

discussed in the previous chapter. The program WORD2.EXE will be used to
demonstrate these new concepts.

The source code associated with this program is located in \ZINC\TUTOR\WORD. It
contains the following files:

WORD2.CPP—This file contains the main program loop (i.e., UL_APPLICATION-
::Main()) as well as the implementation of the DICTIONARY_WINDOW,
DICTIONARY and D_WORD classes.

WORD2.HPP—This file contains the declarations for the DICTIONARY_-
WINDOW, DICTIONARY and D_WORD classes.

WORD.DCT—THhis file is the dictionary database file.

* DEF, *. RC—These files are the environment specific definition and resource files
required when compiling for Windows or 0OS/2. (NOTE: The W*.* files are for
Windows and the O*.* files are for 0S/2.)

*.MAK—These files are the compiler-dependent makefiles associated with the Word

program. (See “Chapter 1—Initializing the Library” for information on compiling
for each Zinc-supported platform.)

Chapter 5 — Event Flow 63

Program execution

The operation of the dictionary program can be seen by compiling and running the
application WORD2.EXE. The following should appear on the screen:

Enter a word: ||7

Definition:

Antonyms: | I

Synonyms: I |

To look up a word, position the cursor on the “Enter a word” field by either clicking on
it with the left mouse button or pressing <TAB> until the cursor appears in the field.
Once the field becomes current, simply type a word and press enter. If the word is in the
dictionary, the definition, antonyms and synonyms will be displayed. If the word is not
in the dictionary and cannot be displayed, an error message will appear saying “That
word was not found in the dictionary.” Remember, as in the previous tutorial, that good,
bad, begin and end are the only words available and the search is case-sensitive.

When you are finished using the dictionary, exit the program by either selecting ““Close”

from the system button’s pop-up menu or by pressing <Alt+F4>.

Class definitions

The dictionary window is implemented with a class called DICTIONARY_WINDOW.
The actual dictionary is comprised of the classes: DICTIONARY, D_WORD and

64 Zinc Application Framework — Programming Techniques

WORD_ELEMENT. The definition for the DICTIONARY_WINDOW class is given
below:

class DICTIONARY_WINDOW : public UIW_WINDOW
{
public:
DICTIONARY_WINDOW (void) ;
~DICTIONARY_WINDOW (void) ;

int dictionaryOpened;

private:
DICTIONARY *dictionary;
UIW_STRING *inputField;
UIW_TEXT *definitionField;
UIW_STRING *antonymField;
UIW_STRING *synonymField;

static EVENT_TYPE LookUpWord (UI_WINDOW_OBJECT *string, UI_EVENT &event,
EVENT_TYPE ccode) ;
}i

DICTIONARY_WINDOW uses the following member variables:

* dictionaryOpened is a variable that tells if the dictionary was successfully opened.
Since constructors cannot return values, we must set a flag to denote the dictionary
status. This value is public so that the controlling program can verify that the
dictionary was created.

* dictionary is the pointer to the dictionary itself. The instance of DICTIONARY that
is pointed to by this pointer is allocated in the constructor for DICTIONARY_-
WINDOW. This variable is only used by the DICTIONARY_WINDOW class and
therefore is made private.

* inputField is a pointer to the UIW_STRING field that is used to collect the input
word from the user. This variable is only used by the DICTIONARY_WINDOW
class and therefore is made private.

* definitionField is a pointer to the UIW_TEXT field that is used to display the
definition for the input word. This variable is only used by the DICTIONARY_-
WINDOW class and therefore is made private.

* antonymField is a pointer to the UIW_STRING field that is used to display the
antonyms for the input word. This variable is only used by the DICTIONARY_-
WINDOW class and therefore is made private.

* synonymkField is a pointer to the UIW_STRING field that is used to display the

synonyms for the input word. This variable is only used by the DICTIONARY_-
WINDOW class and therefore is made private.

Chapter 5 — Event Flow 65

66

The definition for the DICTIONARY class is given below:

class DICTIONARY : public UI_LIST
{
public:

int opened;

DICTIONARY (char *name) ;
static int FindWord(void *element, void *matchbData) ;
D_WORD *First (void);

D_WORD *Get (const char *word) ;
}i

DICTIONARY uses the following member variable:

o opened is a variable that tells if the dictionary was successfully opened. Since
constructors cannot return values, we must set a flag to denote the dictionary status.
This value is public so that the controlling program can verify that the dictionary was
created.

The definition for the D_WORD class is given below:

class D_WORD : public UI_ELEMENT
{
public:

char *string;

char *definition;

UI_LIST antonymList;

UI_LIST synonymList;

D_WORD(FILE *file);
~D_WORD (void) ;

D_WORD *Next (void) ;
}i
D_WORD uses the following member variables:
» string is a variable that contains the actual word entry in the dictionary.
definition is a variable that contains the definition string of the word.
o antonymlList is a list of antonyms that apply to the dictionary entry.
o synonymList is a list of synonyms that apply to the dictionary entry.

The definition for the WORD_ELEMENT class is given below:

class WORD_ELEMENT : public UI_ELEMENT
{
public:

char *string;

Zinc Application Framework — Programming Techniques

WORD_ELEMENT (const char *a_string);
~WORD_ELEMENT (void) ;

WORD_ELEMENT *Next (void) ;
};

WORD_ELEMENT uses the following member variables:

* string is a variable that contains a character string. In this example, it is used to hold
either antonyms or synonyms.

Creating the window

In this version of the dictionary program, we will create a specialized window class called
DICTIONARY_WINDOW that will be derived from the Zinc window class UIW_-
WINDOW. Instead of using the existing UTW_WINDOW class, we will derive one that
will not only handle the I/O with the window fields, but will also maintain the commun-
ication with the dictionary itself.

When the DICTIONARY_WINDOW constructor is called, the window itself is auto-
matically created since U'W_WINDOW was declared as the base class. Once inside the
constructor, each of the fields is created and then added to the window. Objects are

added to the window using the C++ reserved word this and the overloaded + operator.
The DICTIONARY_WINDOW constructor is shown below:

DICTIONARY_WINDOW: : DICTIONARY_WINDOW (void) : UIW_WINDOW (16, 6, 41, 14)
{

if (dictionaryOpened)
{
// Create the window fields.
inputField = new UIW_STRING(17, 1, 20, "", 40, STF_NO_FLAGS,
WOF_BORDER | WOF_AUTO_CLEAR, DICTIONARY_WINDOW: : LookUpWord) ;
definitionField = new UIW_TEXT (17, 3, 20, 4,"", 100, TXF_NO.FLAGS,
WOF_BORDER) ;
antonymField = new UIW_STRING (17, 8, 20, *", 50, TXF_NO_FLAGS,
WOF_BORDER) ;
synonymField = new UIW_STRING(17, 10, 20, ", 50, TXF_NO_FLAGS,
WOF_BORDER) ;

*
ot
i3
-
0]

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE_BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE("Dictionary")

new UIW_PROMPT (2, 1, "Enter a word:")
inputField

new UIW_PROMPT (2, 3, "Definition:")
definitionField

new UIW_PROMPT (2, 8, "Antonyms:")
antonymField

L S S S S SR S

Chapter 5 — Event Flow 67

68

+ new UIW_PROMPT (2, 10, "Synonyms:")
+ synonymField;

}

The necessary objects are added to the window inside the constructor so that when the
DICTIONARY _WINDOW class is created, only a few lines are required to create it and
display it on the screen. Examine the following piece of code taken from the main
function in the WORD2.CPP file:

// Create the dictionary window.
DICTIONARY WINDOW *dictionary = new DICTIONARY_WINDOW() ;

// If the dictionary was opened, add it to the window manager.
if (dictionary->dictionaryOpened)
*windowManager + dictionary;
else
{
dictionary->errorSystem->ReportError (windowManager, -1,
"The dictionary file 'WORD.DCT’ was not found.");
delete dictionary;
}

If the objects were not added in the constructor but were added to the newly created
instance of the DICTIONARY_WINDOW class, then each time the class was created,
there would be a significant duplication of code. Adding the objects inside the constructor
provides a stronger encapsulation of data and code.

The user function

This version of the dictionary tutorial allows the user to type a word in the “Enter a
word” field and press <ENTER> to display either the word’s data or an error message.
This is done through the use of a user function. We will use the user function to compare
the data entered into the object’s field to the words in the dictionary. User functions can
be assigned to any window object through the object’s constructor. Look at the
DICTIONARY_WINDOW constructor:

inputField = new UIW_STRING(17, 1, 20, "", 40, STF_NO_FLAGS,
WOF_BORDER | WOF_AUTO_CLEAR, DICTIONARY_ WINDOW: : LookUpWord) ;

When the UIW_STRING field is constructed, the last parameter references the user
function. Adding a user function allows the UIW_STRING object to call this function
whenever the string field is made current, non-current or when the <ENTER> key is
pressed.

Zinc Application Framework — Programming Techniques

In order for the compiler to generate an address, user functions must be declared as static.
The user function LookUpWord() has the following parameters (required for all user
functions):

e returnValue,, is the result of the operation. Most often ccode is the value returned.
However, if -1 is returned, the calling window object will be informed that some
error occurred and the text is restored to its previous value.

* object,, is a U_WINDOW_OBJECT pointer to the object that invoked this function.
In this case, the calling object is a UIW_STRING field whose parent is a
DICTIONARY_WINDOW object. This pointer must be typecast by the programmer
if object specific information is needed.

* event, is the event that caused this function to be called.
* ccodey, is the logical interpretation of the event that caused this function to be called.

Consider the implementation of LookUpWord():

EVENT_TYPE DICTIONARY_WINDOW: : LookUpWord (UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)
{

}

Since the user function is called when the string field receives the S_CURRENT,
S_NON_CURRENT or L_SELECT messages, the first step is to determine if the ccode
is S_CURRENT. In the dictionary tutorial, if the input string field is just becoming
current, a new word has not been entered and the function returns without doing anything.
Examine the initial check in LookUpWord():

// Return if the field is just becoming current.
if (ccode == S_CURRENT)
return errorCode;

If the input field is becoming non-current, the dictionary must be called to verify the input
word. To do this, it must have a pointer to the current dictionary object. Note that the
input string and the dictionary pointer are both members of the DICTIONARY_ WINDOW
class. Therefore, it is easy to get a pointer to the correct instance of DICTIONARY _-
WINDOW, since the object’s parent is the DICTIONARY_WINDOW. The following
code segment demonstrates how to get a pointer to the parent, DICTIONARY_ WINDOW:

DICTIONARY_WINDOW *dictionaryWindow = (DICTIONARY_WINDOW *)object-s>parent;

Chapter 5 — Event Flow 69

With the dictionaryWindow pointer, access can be made to the public variables and
functions of the DICTIONARY_WINDOW class, including the variable dictionary. In
order to see if the word is in the dictionary, the user function calls the function
DICTIONARY::Get() by using the dictionaryWindow pointer that was initialized above.
This function will either return a NULL, if the word is not found, or a pointer to a
D_WORD structure that contains the input word and its associated information. If the
return value is a valid pointer, the word’s information is written to the appropriate window
fields by calling each field’s DataSet() function. In the event of error, an error message
is displayed. The return value for the user function is O upon success or -1 upon error.

Following events

70

Now that a windowing system has been added to the dictionary program, let’s study how
events are passed through the system. For example, what happens between the time that
a user types a character (e.g., ‘g’) in the “Enter a word” field and the time that the letter
appears on the screen? In this section, we will examine event flow in DOS and in the
Windows environment.

NOTE: Currently, Zinc supports two additional GUI environments (i.e., 0S/2 and Motif).

Although the messages and their meanings differ, the OS/2 and Motif environments pass
messages in the same way as Windows.

Event flow—DOS

When a key is pressed, the character is placed in the computer’s BIOS keyboard buffer.
This is done by the computer and is independent of any application software that is
running. The “do” loop in the main function of the program controls the dispatching of
events.

EVENT_TYPE ccode;

UI_EVENT event;

do

{
// Get input from the user.
eventManager->Get (event) ;

// Send event information to the window manager.
ccode = windowManager->Event (event) ;
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ;

When eventManager->Get() is called, each of the devices attached to the Event
Manager is polled. If a device, such as the keyboard, has an event waiting, a U_EVENT
structure is created, filled with the proper data and put on the end of the event queue.
Let’s assume that there were no other events on the queue when the ‘g’ key event was
put on the queue. The event variable passed to the Get() function is filled with the next

Zinc Application Framework — Programming Techniques

event in the event queue (e.g., the ‘g’ key event). When program control returns from
the Get() function, the event is passed to the Window Manager with the call window-
Manager->Event().

Once the Window Manager has control, it sends the event to the current window object.
Each time an object gets the event, it passes it to its current child object. It continues to
do this until it gets to the bottom of the hierarchy. Once the control gets to the bottom-
most object, the object tries to interpret the event. If it can, it does and then returns a
control code. If it cannot, it returns an S_UNKNOWN message to its parent and its
parent tries to interpret the event, and so on. In this manner, the events are interpreted
from the bottom up. If an S_UNKNOWN message is returned to the Window Manager
and the event carries a specified region (such as with a mouse click), the Window
Manager checks to see if another object should become current. If 8o, that object is made
current and the event is passed to the current object. If no window can handle the event,
the Window Manager just returns an S_UNKNOWN message and the event is ignored.

In the case of the ‘g’ key in the dictionary example, the Window Manager’s current object
is the dictionary window. The window receives the event and sends it to its own current
object which is the U'W_STRING field. The string’s Event() function receives the event
and calls UL_WINDOW_OBJECT::LogicalEvent() to try to find a logical mapping of
the event. Once it determines that the event is a keystroke and that it contains a ‘g’
character, the character is copied into the string’s memory buffer. A call is made to
UIW_STRING::Redisplay(), which in turn calls display->Text() to actually paint the
character on the screen. A control code is then returned to the object’s parent and finally
to the Window Manager which returns to the main do loop, where the sequence starts
over again.

Event flow—Microsoft Windows

The Microsoft Windows version of Zinc Application Framework is somewhat simpler than
the DOS version. This is due to the fact that Windows does the I/O itself and Zinc only
handles the resulting messages. When a UIW_STRING field is created, Zinc creates an
actual Windows string object. In the Windows version, Zinc serves as a layer between
the existing Windows system and the user application that was written using Zinc. This
model allows programs to be easily ported to any of the environments that Zinc supports.

In order to follow an event through the Zinc system while running under Windows, it is
necessary to explain something about the way in which Windows passes messages. First
of all, Windows messages are put on a Windows message queue where they can be
dispatched directly to the current field on the current object. Messages are passed to an
object via a special member function known as a “callback” function. A callback
function is a Window’s function used for sending messages.

Chapter 5 — Event Flow 71

Now, let’s consider the example of the ‘g’ key being pressed while a UIW_STRING field
is current. First, Windows creates a message and puts it on the Windows message queue.
Look at the “do” loop in the function UI_APPLICATION::Main():

EVENT_TYPE ccode;
UI_EVENT event;
do

{
// Get input from the user.
eventManager->Get (event) ;

// Send event information to the window manager.
ccode = windowManager->Event (event);
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ;

When eventManager->Get() is called, it doesn’t return until Windows has generated a
message. Once this is done, the call to windowManager->Event() instructs Windows
to dispatch the message. When a message is dispatched, Windows calls the appropriate
object’s callback function (i.e., UIW_STRING in this case) saying that the character ‘g’
was pressed. In this case, the string object’s callback function sends the message to the
string object’s jump procedure which in turn calls UIW_STRING::Event(). At this
point, the event continues in the same manner as with the DOS version. After Zinc
handles the message, it is passed back to Windows so that the character may be painted
on the screen.

Conclusion

72

You should now understand how a window and its fields are created, how window objects
are used to display information and receive input from the user, how user functions can
be used to check data input, and how events are handled throughout the system. If you
wish to interface with a separate database you can use this program as a template and,
instead of using the class DICTIONARY, you will make the appropriate calls to your
database program.

Zinc Application Framework — Programming Techniques

CHAPTER 6 — THE ZINC DATA FILE

This tutorial demonstrates database interaction with Zinc Application Framework and the
use of the Zinc data file. After finishing this tutorial, you should be able to understand:

e the use of the Zinc data file
* how to add and delete user-defined objects within the Zinc data file.

In this tutorial, we will examine a new version of the dictionary program that has been
used in previous chapters. The program WORD3.EXE will be used to demonstrate these
new concepts.

The source code associated with this program is located in \ZINC\TUTOR\WORD. It
contains the following files:

WORD3.CPP—This file contains the main program loop (i.e., UL_APPLICATION-
::Main()) as well as the implementation of the DICTIONARY_WINDOW,
DICTIONARY and D_WORD classes.

WORD3.HPP—This file contains the declarations for the DICTIONARY_-
WINDOW, DICTIONARY and D_WORD classes.

WORD_WIN.CPP—This file contains the object table for the objects that were
created in the designer.

WORD_WIN.DAT—This file is the data file that was created by the Designer. It
contains the data information necessary to create the dictionary window and its fields.

WORD_WIN.HPP—This file contains the header information for the WORD -
WIN.DAT file. This file contains the #define directives for the numberID’s of the
file objects in the data file. It also contains the help file header information for the
WORD_WIN.DAT file.

*.DEF, *.RC—These files are the environment specific definition and resource files
required when compiling for Windows or OS/2. (NOTE: The W#*.* files are for
Windows and the O*.* files are for 0S/2.)

*.MAK—These files are the compiler-dependent makefiles associated with the Word
program. (See “Chapter 1—Initializing the Library” for information on compiling
for each Zinc-supported platform.)

Chapter 6 — The Zinc Data File 73

Program execution

The operation of this version of the dictionary program can be seen by running the
application WORD3.EXE. The following should appear on the screen:

Enter a word: " J

Definition:

Antonyns: r

Synonyms: | 4'

At this point, the dictionary database will be empty. To add words to the dictionary,
simply type the word, definition, antonyms and synonyms in the appropriate fields and
press the “Save” button on the bottom of the window. To look up a word, type the word
in the “Enter a word:” field and press the “Lookup” button. To delete a word, type the
word in the “Enter a word:” field and press the “Delete” button.

When you are finished using the dictionary, exit the program by either selecting “Close”
from the system button’s pop-up menu or by pressing <Shift+F4>.

Class definitions

The dictionary window is implemented with a class called DICTIONARY_WINDOW.
The definition of the DICTIONARY_WINDOW class is given below:

class EXPORT DICTIONARY_WINDOW : public UIW_WINDOW
{
public:
DICTIONARY_WINDOW (char *dictionaryName) ;
~DICTIONARY_WINDOW (void) ;

EVENT_TYPE Event (const UI_EVENT &event) ;

74 Zinc Application Framework — Programming Techniques

private:
DICTIONARY *dictionary;
UIW_STRING *inputField;
UIW_TEXT *definitionField;
UIW_STRING *antonymField;
UIW_STRING *synonymField;

static EVENT_TYPE ButtonFunction (UI_WINDOW_OBJECT *item,
UI_EVENT &event, EVENT_TYPE ccode);
}i

DICTIONARY_WINDOW uses the following member variables:

dictionary is the pointer to the dictionary itself. The instance of DICTIONARY that
is pointed to by this pointer is allocated in the constructor for DICTIONARY_-
WINDOW. This variable is only used by the DICTIONARY_WINDOW class and
therefore is made private.

inputField is a pointer to the UIW_STRING field that is used to collect the input
word from the user. This variable is only used by the DICTIONARY WINDOW
class and therefore is made private.

definitionField is a pointer to the UIW_TEXT field that is used to display the
definition for the input word. This variable is only used by the DICTIONARY _-
WINDOW class and therefore is made private.

antonymField is a pointer to the UIW_STRING field that is used to display the
antonyms for the input word. This variable is only used by the DICTIONARY_-
WINDOW class and therefore is made private.

synonymField is a pointer to the UIW_STRING field that is used to display the
synonyms for the input word. This variable is only used by the DICTIONARY _-
WINDOW class and therefore is made private.

The definition for the DICTIONARY is as follows:

class EXPORT DICTIONARY : public UI_STORAGE
{
public:
DICTIONARY (char *name) :
UI_STORAGE (name, UIS_OPENCREATE | UIS_READWRITE) ;
~DICTIONARY () ;

D_WORD *Get (const char *word);
}:

Chapter 6 — The Zinc Data File 75

The definition for the D_ENTRY class is as follows:

class D_ENTRY

{

public:
int wasLoaded;
char *word;
char *definition;
char *antonym;
char *synonym;

D_ENTRY (const char *name, UI_STORAGE *file,
UIS_FLAGS sFlags = UIS_READ);
~D_ENTRY (void) ;

static D_ENTRY *New(const char *name, UI_STORAGE *file,
UIS_FLAGS sFlags = UIS_READ) ;
void Save(void) ;

}:

D_ENTRY uses the following member variables:

« wasLoaded is a flag used to denote whether or not the word entry was loaded.
e word is a variable that contains the actual word entry in the dictionary.
definition is a variable that contains the definition string of the word.

s antonym is a list of antonyms that apply to the dictionary entry.

e synonym is a list of synonyms that apply to the dictionary entry.

Creating the window

76

The window for this program was created using Zinc Designer and is contained in the file
WORD_WIN.DAT. You may recreate this window by starting Zinc Designer and build
it as it appears in the Program execution section above. (See “Chapter 3—Using Zinc
Designer” for steps on using the designer.)

When a field is created, the designer gives it a default stringID. A string identification
is a label that is used to uniquely identify each object. The default stringID’s are of the
form FIELD 1, FIELD_2, etc. In most cases, the default stringID is sufficient. However,
in order to access a particular field, it is helpful to specify a new stringID. In the
designer, an object’s string identification can be changed by bringing up the object’s edit
window and entering a new string identification in the “‘stringID:” field. For example,
to change the “Lookup” button’s stringID, make the button current and bring up its edit
window. The new stringID for the “Lookup” button should be LOOKUP_BUTTON and

Zinc Application Framework — Programming Techniques

LOOKUP_BUTTON should be entered in the “stringID” field of the button’s edit
window (shown below):

text: [j []BTF_CHECK_BOX

[J BTF_DOUBLE_CLICK
paue: B 5T] []BTF_DOWN_CLICK
userFunction{ K BTF_NO_TOGGLE
[0BTF_NO_3D

bitmap: |
None [JBTF_RADIO_BUTTON
[0 BTF_REPEAT
[]BTF_SEND_MESSAGE
—woFlags—
stringiD: [FIELD_8] [woF gBORDER

helpContext: [None X WOF_JUSTIFY_CENTE

Now that the window has been set up, it is necessary to connect the “Lookup” button to
the function that will look up the word. This is done by assigning a function to the
button’s userFunction member variable. To get a pointer to the button, first create the
window that contains the button. In this example, the window is created when the
DICTIONARY_WINDOW constructor is called. Then call the window’s Information()
function with the GET_STRINGID_OBJECT request and the stringID that was assigned
to the button when it was created in the Designer. This will return a void pointer that
points to the button, so it will need to be cast as a UIW_BUTTON *. These steps are
shown by the following piece of code:

DICTIONARY_WINDOW: : DICTIONARY_WINDOW (char * dictionaryName)
UIW_WINDOW ("word_win.dat~WINDOW_DICTIONARY")
{

// Set the user functions to the buttons.

UIW_BUTTON *button;

button = (UIW_BUTTON *)Get (DCT_LOOKUP_BUTTON) ;
button->userFunction = DICTIONARY WINDOW: :ButtonFunction;

}

With a pointer to the button, ButtonFunction() can be assigned as the userFunction.
ButtonFunction() is a generic function that all the DICTIONARY_WINDOW buttons

Chapter 6 — The Zinc Data File 77

call. This way they can be dispatched through a single static function instead of having
a user function for each of the buttons on the window.

Using the data file

Ul_

78

The Zinc data file is used by the designer to store persistent objects. However, it can also
be used to store user-defined objects. Using the data file will allow us to take advantage
of the existing database functions such as add, delete and lookup. Although we will only
discuss the Zinc data file, it is also possible to implement this example using a third party
database library. The following two sections, UI_STORAGE_OBJECT and UI_-
STORAGE, describe the Zinc data file.

STORAGE_OBJECT

The D_ENTRY class contains a private member variable of type UL_STORAGE_OBJECT
so that it can be stored as an object in the Zinc data file. The UL_STORAGE_OBIJECT
class takes storage information and makes it available in a list format. It is used in
conjunction with the UL_STORAGE class to identify an object’s location within a file.

Although D_ENTRY contains a UIL_STORAGE_OBIJECT member variable, there are three
functions that must be set up properly in order for it to function as a persistent object.
These functions are: constructor, New() and Save().

The constructor

The constructor for the D_ENTRY class takes the following three parameters:

e name is the name of the storage object.

* file is the file containing the object. If the object is not found in the file, the member
wasLoaded is set to FALSE. Otherwise, wasLoaded is set to true and the object is
retrieved from the data file.

flags indicate whether the object is to be loaded or created. If the entry is found and

the UIS_CREATE flag is set, the entry will be deleted from the file in preparation
for the new entry being saved.

Zinc Application Framework — Programming Techniques

D_ENTRY: :D_ENTRY (const char *name, UI_STORAGE *file, UIS_FLAGS flags)
word (NULL) , definition (NULL), antonym (NULL) , synonym (NULL)
{

object = new UI_STORAGE_OBJECT (*file, name, ID_DICTIONARY_ENTRY, flags);

// Check to see if object was found in the file.

if (object->objectError)
wasLoaded = FALSE;

else if (FlagSet (flags, UIS_CREATE))

{
// If the UIS_CREATE option is set, the record will be
// overwritten and the previous entry (if any) should be deleted.
file->DestroyObject (name) ;

}

else

{
wasLoaded = TRUE;

// Load the word.

USHORT stringLength;
object->Load (&stringLength) ;
if (stringLength)

{

word = new char[stringLength+1];
object->Load (word, 1, stringLength) ;
word[stringLength] = "\0’;

}

// Load the definition.
object->Load (&stringLength) ;
if (stringLength)

{

definition = new char[stringLength+1];
object->Load (definition, 1, stringLength) ;
definition[stringLength] = 1N

}

// Load the antonyms.

object->Load (&stringLength) ;

if (stringLength)

{
antonym = new char[stringLength+1];
object->Load (antonym, 1, stringLength) ;
antonym([stringLength] = "\0’;

}

// Load the synonyms.

object->Load (&stringLength) ;

if (stringLength)

{
synonym = new char[stringLength+1];
object->Load (synonym, 1, stringLength) ;
synonym|[stringLength] = “\0’;

If the word entry is found in the file, each of the object’s fields are loaded. Each field
is preceded by an unsigned short that gives the size, in bytes, of the field to follow. Then
the number of bytes comprising the field itself are read in. Since each object stores its
own fields, the constructor knows how many fields to read in.

Chapter 6 — The Zinc Data File 79

80

The New function

When a word is looked up in the dictionary and its related information is read in, a
function called D_ENTRY::New() is called. The New() function discussed here is a
member of the class and not the new operator of C++.

In this tutorial, only one type of object is stored in the data file, and the benefits of the
New() function are not apparent. However, New() is included as a matter of form. The
reason for having a static New() function in a class is to be able to take the address of
a function that will call the constructor. A good example of this can be seen in the
implementation of an object table. Examine the following object table taken from the file
WORD_WIN.CPP:

UI_ITEM *UI_WINDOW_OBJECT::userTable = _userTable;

static UI_ITEM _objectTable[] =
{
{ ID_BORDER, VOIDF (UIW_BORDER::New), "BORDER", 0 },
{ ID_BUTTON, VOIDF (UIW_BUTTON::New), "BUTTON", 0 },
{ ID_MAXIMIZE_BUTTON, VOIDF (UIW_MAXIMIZE_BUTTON: :New),
"MAXIMIZE_BUTTON", 0 },
{ ID_MINIMIZE_BUTTON, VOIDF (UIW_MINIMIZE_BUTTON::New),
"MINIMIZE_BUTTON", 0 },

{ ID_PROMPT, VOIDF (UIW_PROMPT::New), "PROMPT", 0 },
{ ID_STRING, VOIDF (UIW_STRING::New), "STRING", 0 },
{ ID_SYSTEM_BUTTON, VOIDF (UIW_SYSTEM_BUTTON::New), "SYSTEM_BUTTON",

ol

Y

ID_TEXT, VOIDF (UIW_TEXT::New), "TEXT", 0 },
ID_TITLE, VOIDF (UIW_TITLE::New), "TITLE", 0 },
ID_WINDOW, VOIDF(UIW_WINDOW::New), "WINDOW", 0 },
ID_END, NULL, NULL, 0 }

s R)

}i
UI_ITEM *UI_WINDOW_OBJECT::objectTable = _objectTable;

This object table is the one generated when the window for DICTIONARY_WINDOW
was created in the designer. The designer automatically creates an object table adding an
entry for each type of object used. If you desire to create persistent objects without using
the designer, you will need to create a similar object table.

When an object is read in, the object’s type is loaded and checked against the object table
to see which object is to be created. If the object’s type is ID_WINDOW, for example,
and there is an entry for it in the object table, the UIW_WINDOW::New() will be
called.

The Save function

The purpose of the Save() function is to save the object into a file. Before each of the
object’s members are stored, an unsigned short containing the length of each member is

Zinc Application Framework — Programming Techniques

saved. This allows the correct number of bytes to be loaded when the object is later
retrieved. The following listing shows how members and their lengths are stored:

void D_ENTRY::Save ()

{
// Store the word.
object->Store((USHORT)ui_strlen(word));
object->Store(word, 1, ui_strlen(word));

// Store the word definition.
object->Store((USHORT)ui_strlen (definition));
object->Store (definition, 1, ui_strlen(definition));

// Store the antonyms.
object—>Store((USHORT)ui_strlen(antonym));
object->Store (antonym, 1, ui_strlen(antonym)) ;

// Store the synonyms.
object->Store ((USHORT)ui_strlen (synonym)) ;
object->Store (synonym, 1, ui_strlen (synonym)) ;

}

When Save() is called, object->Store() is called to write the data to storage. UI_-
STORAGE actually writes the data to a temporary file and not to the actual data file. In
order to “commit” the object to permanent storage, UL STORAGE::Save() must be
called. In this program, this call is made in the destructor for the DICTIONARY class.

Ul_STORAGE

The class DICTIONARY is derived from Ul_STORAGE. The UI_STORAGE class is
used to read or write Zinc Application Framework files. It is created as a class so that
the file can be treated as an object, which handles file input and output.

The UI_STORAGE class can be thought of as a file system. Thus, one can make
directories, change directories and add and delete ““files” (i.e., resources) within the file.
The main difference between a UI_STORAGE class and a regular file is that the
UI_STORAGE file is constructed so that specific objects can be saved and retrieved.
These objects can be persistent objects, and the user can store items or objects of different
types to the file.

Conclusion

You should now be able to understand how to use the Zinc data file and how to add
objects to it. You should also be able to use a window created in the designer within an
application and add user functions to buttons on the window. Some enhancement ideas
for the DICTIONARY program include creating multiple types of persistent objects for
use in the same data file or using a third party database instead of the Zinc data file.

Chapter 6 — The Zinc Data File 81

82

Zinc Application Framework — Programming Techniques

SECTION Il
ZINC APPLICATION PROGRAM

Section Ill - Zinc Application Program 83

84

Zinc Application Framework — Programming Techniques

CHAPTER 7 - GETTING THE RIGHT DESIGN

The next several tutorials are designed to help you understand Zinc design and coding
features, which will help you to write efficient applications. The source code associated
with this program is located in ZINC\TUTOR\ZINCAPP. It contains the following files:

ZINCAPP.CPP—This file contains the main program loop (i.e., main() or Win-
Main()).

ZINCAPP.HPP—This file contains the constant definitions for the display, window,
event and help messages that are passed through the system when a pop-up item is
selected from the main control window. In addition, this file contains the declarations
for the ZINCAPP_WINDOW_MANAGER, CONTROL_WINDOW and EVENT .-
MONITOR classes.

CONTROL.CPP—This file contains the following member functions:

CONTROL_WINDOW::CONTROL_WINDOW()
CONTROL_WINDOW::Event()
CONTROL_WINDOW::Message()
ZINCAPP_WINDOW_MANAGER::Event()
ZINCAPP_WINDOW_MANAGER::ExitFunction()

These functions are used to create the main control menu and to handle all main
control throughout the application.

SUPPORT.CPP—This file contains the object table that must be compiled with the
application since persistent window objects are to be used.

SUPPORT.DAT—This file is the binary data file created by the Designer. It
contains the help context and persistent window object information.

SUPPORT.HPP—This file contains the help context constant information used to
associate a help context with a window. It also contains the persistent object
identification values entered as the stringID field for each object in the .DAT file.

DISPLAY.CPP—This file contains the CONTROL_WINDOW::Option_Display()
member function. This function is used to change the type of display used.

EVENT.CPP—This file contains the CONTROL_WINDOW::Option_Event() and
EVENT_MONITOR() member functions. These functions are used to process all

Chapter 7 — Getting the Right Design 85

the messages that are produced when an “Event” menu item is selected from the
main control window.

HELP.CPP—This file contains the CONTROL_WINDOW::OptionHelp() member
function. It processes all of the messages that are produced when a “Help” menu
item is selected from the main control window.

WINDOW.CPP—This file contains the CONTROL_WINDOW::OptionWindow()
member function. This function invokes the proper window that was selected from
the main control window by processing all the messages that are produced when a
menu item is selected.

* DEF, *.RC—These files are the environment specific definition and resource files
required when compiling for Windows or OS/2. (NOTE: The W*.* files are for
Windows and the O*.* files are for OS/2.)

* MAK—These files are the compiler-dependent makefiles associated with the
Zincapp program. (See “Chapter 1—Initializing the Library” for information on
compiling for each Zinc-supported platform.)

Goals

86

The first step in designing an effective application—after you have identified your
audience and the major objectives you want to achieve—is defining the high-level
operation of your program.

The Zinc application program is designed with the following main areas of emphasis:

General control—The goal of this area is to provide a consistent easy-to-use
program that will be familiar to users. This goal is accomplished by providing a
consistent interface that conforms to the Common User Access (CUA) standards.

Screen features—The goal of this area is to show the flexible and versatile nature
of the screen display. This goal is accomplished by letting users switch display
modes from text to graphics, or vice versa during the application.

Window objects—The goal of this area is to show Zinc Application Framework as
a complete user interface package. This goal is accomplished by showing the many

different types of user interface objects that can be created using the library.

Event information—The goal of this area is to show the flexible nature of input
information and the advanced event driven architecture. This goal is accomplished

Zinc Application Framework — Programming Techniques

by showing how input information is entered then processed by objects within the
system.

Help contexts—The goal of this area is to make the application user friendly. This
is accomplished by providing help at every aspect of the application, and by
considering the many different types of help questions a user may have.

High-level design

Once we have identified the major goals and the general methods of implementation, we
need to decide how the information will be presented. The Zinc application program
presents the major areas through a single control window with the items placed as pull-
down items within the window. This window is shown below:

onul iplayr vent elp ‘

From a conceptual level, the main window serves as the control unit to all of the areas
of emphasis we have identified by pull-down items. Each sub-module controls the
operation of items within its scope. For example, the main control window may pass
control to a screen features control unit. It, in turn, will either send a message through
the system, requesting that some action be performed or pass control to some other
function where the operation can be performed. The representation of this control can be
shown by the figure below:

Chapter 7 — Getting the Right Design 87

program
management

= o ,
general screen ﬂvmdow eve he|p
control features \objecty information context

Each item has the following options: 1) call function or 2) send message

This model is very consistent, and, when implemented, will be easily understood and
maintained by other programmers.

Implementation

Now that we have the high-level design, let’s look at the implementation details of the
application. This program uses an event driven, object-oriented architecture. The
following provides a conceptual overview to how the program is organized:

1—The controlling window is created and is attached to the Window Manager. This
window is a class object derived from the base UIW_WINDOW class. Its derivation
from a window allows us to override the Event() virtual function to determine what
messages are being passed to the window and then lets us dispatch those messages
in a clean fashion through class member functions (described later in this chapter).

class CONTROL_WINDOW : public UIW_WINDOW
{
public:
CONTROL_WINDOW (void) ;
virtual EVENT_TYPE Event (const UI_EVENT &event) ;

The constructor is used to set up the window and pop-up menu items. A partial
listing of this initialization is shown below:

CONTROL_WINDOW: : CONTROL_WINDOW (void) : UIW_WINDOW(O0, 0, 76, 6,
WOF_NO_FLAGS, WOAF_LOCKED)
{
// Control menu items.
static UI_ITEM controllItems[] =
{
{ S_REDISPLAY, VOIDF (CONTROL_WINDOW: :Message) ,
"gRefresh\tShift+F6", MNIF_NO_FLAGS },

88 Zinc Application Framework — Programming Techniques

{ g, VOIDF(0), L MNIF_NO_FLAGS },// item separator
{ L_EXIT_FUNCTION, VOIDF (CONTROL_WINDOW: :Message) ,
"E&xit\tAlt+F4", MNIF_NO_FLAGS }
{ 0, 0, 0,/ 0} // End of array.
}i

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON (SYF_GENERIC)
new UIW_TITLE("Zinc Application")
& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS,
controlItems)
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS,
displayItems)
+ &(*new UIW_PULL_DOWN_ITEM ("&Window", WNF_NO_FLAGS)
+ controlObjects
+ inputObjects
+ selectObjects)
+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helpItems));

+ + 4+ + +

}

The most important aspect of this construction is the use of the UI_ITEM structures
that contain the definition for all pull-down items. Each pull-down item has an
associated UI_ITEM array. The elements of this array are:

 the internal message that will be passed through the system. This is the first
field in the UILITEM structure. For example, the first Control menu item
(Clear) contains the message MSG_CLEAR. This message will be passed
through the system whenever the Control | Clear menu item is selected.

* the static member function that is called when the user selects a menu item. All
menu items specify CONTROL_WINDOW::Message() as their user-function.
This function is responsible for the actual dispatching of messages via the Event
Manager.

* the string information to be displayed on the screen. In the case of the Clear
menu item this string is “&Clear\tShift+F5”. (The “Shift+F5” portion of the
string is discussed later in this chapter.)

* the menu item flags. These flags control the presentation and interaction of the
menu item. For example, MNIF_CHECK_MARK will cause a check mark
character to be displayed to the left of the menu item’s text when the item is
selected.

Chapter 7 — Getting the Right Design 89

90

2—The Window Manager dispatches all messages to the front window (in our case
the main control window). When the main control window receives input, it
dispatches the information according to the logical type.

The class members responsible for the first sub-level of control are shown below:

class CONTROL_WINDOW : public UIW_WINDOW
{
protected:
void OptionDisplay (EVENT_TYPE item) ;
void OptionEvent (EVENT_TYPE item) ;
void OptionHelp (EVENT_TYPE item) ;
void OptionWindow (EVENT_TYPE item) ;
}i

In our application there are four types of messages that can be received:

Display option messages—These types of messages are generated when a
“Display” menu item has been selected from the main control window. They
are processed by the OptionDisplay() member function.

Window option messages—These types of messages are generated when a
“Window” menu item has been selected from the main control window. They
are processed by the OptionWindow() member function.

Event option messages—These types of messages are generated when an
“Event” menu item has been selected from the main control window. They are
processed by the OptionEvent() member function.

Help option messages—These types of messages are generated when a “Help”
menu item has been selected from the main control window. They are processed
by the OptionHelp() member function.

All other messages are passed to the UIW_WINDOW::Event() member function
for processing.

NOTE: The control option messages are automatically processed by the Window
Manager since they represent operations handled by the Window Manager.

3—When an option member function is selected, it has the option of either sending
a message back through the system or of calling another member function that is
appropriate based on the type of message. For example, the “Display” control
function (OptionDisplay) sends a message through the system rather than re-setting
the display itself:

Zinc Application Framework — Programming Techniques

#if defined (ZIL_MSWINDOWS) || defined (ZIL_0S2) || defined (ZIL_MOTIF)
void CONTROL_WINDOW: :OptionDisplay (EVENT TYPE item)
{
}
#else
void CONTROL_WINDOW: :OptionDisplay (EVENT_TYPE item)
4,
// Set up the default (i.e., graphics mode) event.
UI_EVENT event (S_RESET_DISPLAY, TDM_NONE) ;

// Decide on the new display type.
if (item == MSG_25x40_MODE)
event .rawCode = TDM_25x40;
else if (item == MSG_25x80_MODE)
event .rawCode = TDM_25x80;
else if (item == MSG_43x80_MODE)
event .rawCode = TDM_43x80;

// Send a message to reset the display.
// (Code resides in main program loop) .
eventManager->Put (event) ;

}

#fendif

The “Event” control function (OptionEvent), on the other hand, creates an event
monitor class object and attaches it directly to the Window Manager. No additional
messaging is required.

The implementation details of each menu item is given in the next five tutorial chapters.
These chapters are organized in the following manner:

“Chapter 8—Control Options”™ contains information about program flow when one
of the “Control” menu items is selected from the main control window.

“Chapter 9—Display Options™ contains information about program flow when one
of the “Display”” menu items is selected from the main control window.

“Chapter 10—Window Options” contains information about program flow when one
of the “Window”” menu items is selected from the main control window.

“Chapter 11—Event Options™ contains information about program flow when one
of the “Event” menu items is selected from the main control window.

“Chapter 12—Help Options™ contains information about program flow when one of
the “Help” menu items is selected from the main control window.

The remaining parts of this chapter address the implementation of accelerator keys and
a brief discussion of how structured programming is often used with Zinc Application
Framework.

Chapter 7 — Getting the Right Design 91

Accelerator keys

92

There are two accelerator keys defined for this program:

<Shift+F6>—Pressing this key combination causes the Window Manager to clear the
screen and to redisplay each window that is attached to the Window Manager’s list
of window objects.

<Alt+F4>—Pressing this key combination causes the exit application window to
appear on the screen.

The accelerator keys are implemented in the CONTROL_WINDOW::Event() function.

EVENT_TYPE CONTROL_WINDOW: : Event (const UI_EVENT &event)

{

// Check for an accelerator key.

EVENT_TYPE ccode = event.type;

if (ccode == L_EXIT_FUNCTION)
eventManager->Put (UI_EVENT (L_EXIT_FUNCTION)) ;

if (ccode == E_KEY)
{
// Define the set of accelerator keys.
static struct ACCELERATOR_PAIR
{
RAW_CODE rawCode;
LOGICAL_EVENT logicalType;
} acceleratorTable[] =
{

{ SHIFT_F6, S_REDISPLAY 1},
{ ALT_F4, I_EXIT_FUNCTION 1},
{0, 0} // End of array.

}i

for (int i = 0; acceleratorTable([i].rawCode; i++)
if (event.rawCode == acceleratorTable[i].rawCode)

UI_EVENT tEvent (acceleratorTable[i].logicalType);

eventManager->Put (tEvent); // Put the accelerator key
return (ccode); // into the system.

}

// Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp (event.type) ; // Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type) ; // Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow (event.type) ; // Window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay (event.type) ; // Display menu option selected.

else if (ccode >= MSG_CONTROL)
{
UI_EVENT tEvent (event.type);
eventManager->Put (tEvent) ; // Put the accelerator key
}
else
ccode = UIW_WINDOW: :Event (event) ; // Unknown event.

Zinc Application Framework — Programming Techniques

// Return the control code.
return (ccode) ;

This implementation is described by the following steps:
1—The Event() function receives all input from the Window Manager.

2—If the event is a normal key the control window searches its list of raw-
code/logical type pairs. The definition of the two accelerator keys is given by the
acceleratorTable static array (shown above).

3—If an accelerator key is detected, its logical value is placed into the Event
Manager. This value is later interpreted by the Window Manager, when the main
program loop gets the next key using eventManager->Get().

NOTE: The accelerator keys described above are only available when the main control
window is at the front of the screen.

Structured programming

Quite often, structured programming techniques are used to program with Zinc
Application Framework. If this program were re-written to incorporate this type of
programming, each menu item could be assigned a function that was executed when the
item was selected. Here is some sample code that shows how the “Display, Help”
options specified in the CONTROL_WINDOW constructor could be re-written to call
specific help functions rather than calling a message passing function, as is currently
employed. (This code is not contained in any of the ZincApp program files. It is
presented as a conceptual alternative.)

CONTROL_WINDOW: : CONTROL_WINDOW (void)
UIW_WINDOW(O0, 0, 52, 13, WOF_NO_FLAGS, WOAF_LOCKED)
{
extern EVENT_TYPE HelpKeyboard(UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpMouse (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpCommands (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpProcedures (UI_WINDOW_OBJECT *item,
UI_EVENT &event, EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpHelp (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpZincApp (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;

static UI_ITEM helpltems[] =
{

{ MSG_HELP_KEYBOARD, VOIDF (CONTROL_WINDOW: :Message), "&Keyboard",
MNIF_NO_FLAGS 1},

Chapter 7 — Getting the Right Design 93

{ MSG_HELP_MOUSE, VOIDF (CONTROL_WINDOW: :Message), "&Mouse",
MNIF_NO_FLAGS },

{ MSG_HELP_COMMANDS, VOIDF(CONTROL_WINDOW::Message),"&CommandSM
MNIF_NO_FLAGS 1},

{ MSG_HELP_PROCEDURES, VOIDF (CONTROL_WINDOW: : Message) ,
vgProcedures", MNIF_NO_FLAGS },

{ MSG_HELP_OBJECTS, VOIDF (CONTROL_WINDOW: :Message), "&Objects",
MNIF_NO_FLAGS }

{ MSG_HELP_HELP, VOIDF (CONTROL_WINDOW: : Message) ,
"&Using help", MNIF_NO_FLAGS },

{ 0, VOIDF(0), "", MNIF_SEPARATOR },
{ MSG_HELP_ZINCAPP, VOIDF (About),
"gAbout ...", MNIF_NO_FLAGS }

{0, 0,0, 01} // End of array.

}

You can see how each item could have an associated function that performed a particular
operation based on the type of menu item that was selected. To implement this design
throughout the program, we would need to define functions for each of the menu items
specified in the main control window. Here is an example of how the HelpKeyboard()
function might be implemented:

EVENT_TYPE HelpKeyboard (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode)
{

}

item->helpSystem->DisplayHelp (item->windowManager, HELP_KEYBOARD) ;

While this method of implementation works, it has several drawbacks:

1—It results in duplicate definitions and operations. You can see from the help
example above that it would take seven functions to do the work the CONTROL._-
WINDOW::OptionHelp() function did. This wastes compiler time and executable
space.

21t forces you back into a structured method of programming. Learning an event
driven architecture takes time. It can become very confusing if the application you
write contains elements of an event driven system and elements of structured
programming methods.

3—1It doubles the effort of Zinc Application Framework. Since Zinc is based on an
event driven architecture, a structured functions approach implements a second type
of design architecture. This increases the amount of time and effort involved in
creating and debugging your applications.

There are many advantages to the object-oriented, event driven architecture employed by
Zinc Application Framework. As you work with the library, you will begin to see how

these features combine to make a powerful, consistent library architecture.

Zinc Application Framework — Programming Techniques

CHAPTER 8 — CONTROL OPTIONS

The ZincApp program’s control options are shown under the “Control” menu item:

Display Window Event Help

Exit AltF4 |

The array used to initialize these options is defined in the CONTROL_WINDOW
constructor. It contains the following information:

CONTROL_WINDOW: : CONTROL_WINDOW (void) : UIW_WINDOW(O, 0, 76, 6, WOF_NO_FLAGS,
WOAF_LOCKED)
{

// Control menu items.
static UI_ITEM controlItems[] =
{

{ S_REDISPLAY, VOIDF (Message), "&Refresh\tShift+F6"
MNIF_NO_FLAGS 1},

{0, VOIDF (0), NHCARSY F ; // item separator

{ L_EXIT_FUNCTION, VOIDF (Message), "E&xit\tAlt+F4",

MNIF_NO_FLAGS 1},
{0, 0,0, 0} // End of array.

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON (SYF_GENERIC)
new UIW_TITLE("Zinc Application")
& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS,
controlItems)
+ new UIW_PULL_DOWN_ITEM ("&Display", WNF_NO_FLAGS,
displayItems)
+ &(*new UIW_PULL_DOWN_ITEM ("&Window", WNF_NO_FLAGS)
+ controlObjects
+ inputObjects
+ selectObjects)
+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM ("&Help", WNF_NO_FLAGS, helpItems));

+ + + + +

Chapter 8 — Control Options 95

Control program flow

When a control option is selected, it is handled in five major steps. A complete
explanation of these steps follows (the corresponding steps are shown by the circled
numbers in the figure):

>|7 Ul_EVENT_MANAGER 4‘

e
(MAIN PROGRAM CONTROL)
ad <« A v

8o ZINCAPP_WINDOW_MANAGERJ

@b Control Window
i Clear
Refresh screen
Exit
)
f s k%
event information (2) k

|« CONTROL_WINDOW::Message |

1—The user function, CONTROL_WINDOW::Message(), is called by the UIW_-
POP_UP_ITEM::Event() function. (The pop-up item inherits the code below from
the UIW_BUTTON class.)

EVENT_TYPE UIW_BUTTON: :Event (const UI_EVENT &event)
{

case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent;
tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message() are a pointer to the selected control option
(this), a copy of the event that caused the user function to be called (tEvent), and the
logical interpretation (ccode) of the event that caused Event() to be called. (NOTE:
the variable tEvent needs to be a copy of event since event is a constant variable
whose values cannot be modified.)

2— The CONTROL_WINDOW::Message() function sends-a request to remove the

temporary control options menu by sending an S_CLOSE_TEMPORARY message
through the system via the Event Manager. It then sends the control request through

96 Zinc Application Framework — Programming Techniques

the system by setting event.type to be the menu item’s value (i.e., the S_REDISPLAY
or L_EXIT values defined in the controlOptions array) and then by sending another
message through the system.

EVENT_TYPE CONTROL_WINDOW: :Message (UI_WINDOW_OBJECT *data,
UI_EVENT &event, EVENT_TYPE ccode)

{
if (ccode == L_SELECT)
{

for (UI_WINDOW_OBJECT *tObject = object->windowManager->First();
tObject && FlagSet (tObject->woAdvancedFlags,
WOAF_TEMPORARY) ; tObject = tObject->Next ());
object->eventManager->Put (UI_EVENT (S_CLOSE_TEMPORARY)) ;
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;
}
return (ccode);

}

3—Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message() and then by exiting the UTW_POP_UP_ITEM, CONTROL_WINDOW
and ZINCAPP_WINDOW_MANAGER classes’ Event() virtual functions.

’ UI_EVENT_MANAGER]
4a) 6a —B>
(MAIN PROGRAM CONTROL)
3d < *
!)
3 ‘ ZINCAPP_WINDOW_MANAGER l P

Control Window

4—The main loop picks up the program generated messages by calling event-
Manager->Get(). The first message received is S_CLOSE_TEMPORARY. This
message is handled by the Window Manager and causes the control options menu to
be removed from the screen.

5—The second message received is the control message determined by the selected
menu item. This message is passed to the Window Manager by calling window-
Manager->Event(). The Window Manager performs the following actions
according to the type of message:

Chapter 8 — Control Options 97

98

S_REDISPLAY—Causes the Window Manager to clear the screen and redisplay
each window that is attached to the Window Manager’s list of window objects.

L_EXIT_FUNCTION—The Window Manager calls the CONTROL_WIN-
DOW::ExitFunction() function which displays an exit window on the screen.
A picture of this window is shown below:

This will close the Zinc Application.

If the user selects “OK,” an L_EXIT message is sent through the system via the
Event Manager. The main program uses the L_EXIT to break from its main
loop and exit the application.

// Wait for user response.
EVENT_TYPE ccode;

UI_EVENT event;

do

{

} while (ccode != S_NO_OBJECT && ccode != L_EXIT);

Since the Window Manager recognizes and processes all of these messages, no
control is passed to the control window; rather, program flow returns to the main
loop.

The most interesting part of the flow information discussed above is how CONTROL_-
WINDOW::Message() generates an event that is later interpreted by the Window
Manager and that the message requires no special handling on the application’s part. This
control works correctly because the events are passed through the system via the Event
Manager.

Zinc Application Framework — Programming Techniques

CHAPTER 9 - DISPLAY OPTIONS

The ZincApp program’s display options are shown under the “Display” menu item:

Control

Help

The array used to initialize these options is defined in the CONTROL_WINDOW
constructor. It contains the following information:

static UI_ITEM displayItems[] =

{

#if de
{
{

{

~—

{

#tendif
{
};

// Att
*this
+

+ + + + +

fined (ZIL_MSDOS)
MSG_25x40_MODE,
MNIF_NO_FLAGS }
MSG_25x80_MODE,
MNIF_NO_FLAGS 1},
MSG_43x80_MODE,
MNIF_NO_FLAGS 1},
MSG_GRAPHICS_MODE,
MSG_WINDOWS_MODE,

Message,
Message,
Message,

Message,
Message,

MNIF_NON_SELECTABLE },

0, 0, 0, 0} // End of array.

ach the sub-window objects to the

new UIW_BORDER

new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON

new UIW_SYSTEM_BUTTON (SYF_GENERIC)
new UIW_TITLE("Zinc Application")

& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS, controlItems)
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS, displayItems)
+ &(*new UIW_PULL_DOWN_ITEM ("&Window", WNF_NO_FLAGS)

+ controlObjects
+ inputObjects
+ selectObjects)

"&1-25x40 text mode",
"&2-25x80 text mode",
"&3-(43/50)x80 text mode",

"&4-Graphics mode", MNIF_NO_FLAGS },
"&5-Windows 3.X mode",

control window.

+ new UIW_PULL_DOWN_ITEM ("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helpItems)) ;

Chapter 9 — Display Options

99

Display program flow

When a display option is selected, initial program flow is handled the same way that the
control options are handled. At the fifth step however, program flow is directed to the
OptionsDisplay() member function.

A complete explanation of this flow follows (the corresponding steps are shown by the
circled numbers in the figure below):

....... >r UI_EVENT_MANAGER |

v —g
(MAIN PROGRAM CONTROL)
3d) -t *

3¢] ZINCAPP_WINDOW_MANAGER [

i . y

3b) Control Window
o 25 x 40
25 x 80
43 x 80 0

Graphics (1)
i '\3@

event information (2) = * 67
< | CONTROL_WINDOW::Message |

1—The CONTROL_WINDOW::Message() function is called by the UIW_POP_-
UP_ITEM::Event() function. (The pop-up item inherits the code below from the
UIW_BUTTON class.)

EVENT_TYPE UIW_BUTTON: :Event (const UI_EVENT &event)
{

case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message() are a pointer to the selected display option
(this), a copy of the event that caused the user function to be called (tEvent), and the
logical interpretation (ccode) of the event that caused Event() to be called. (NOTE:
the variable tEvent needs to be a copy of event since event is a constant variable
whose values cannot be modified.)

100 Zinc Application Framework — Programming Techniques

2—The CONTROL_WINDOW::Message() function sends a request to remove the
temporary display options menu by sending an S_CLOSE_TEMPORARY message
through the system via the Event Manager. It then sends the display request through
the system by setting event.rype to be the menu item’s value (i.e., one of the
MSG_DISPLAY values defined in the displayOptions array) and sending this
message through the system.

EVENT_TYPE CONTROL_WINDOW: :Message (UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)
{

if (ccode == L_SELECT)
{
for (UI_WINDOW_OBJECT *tObject = object->windowManager->First();
tObject && FlagSet (tObject->woAdvancedFlags,
WOAF_TEMPORARY) ;
tObject = tObject->Next ())
object->eventManager->Put (UI_EVENT (S_CLOSE_TEMPORARY)) ;
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;
}
return (ccode);
}

3—Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message() and then by exiting the UIW_POP_UP_ITEM, CONTROL_WINDOW
and ZINCAPP_WINDOW_MANAGER classes’ Event() virtual functions.

L UI_EVENT_MANAGER —‘

% (4a) . ba)
C MAIN PROGRAM CONTROL)
3d -—

4b)
3¢ ENCAPP_WINDOW_MANAGER ‘ &

Control Window 6c)

v

[CONTROL_WINDOW::Message | (6)

4—The main loop picks up the program generated messages by calling event-
Manager->Get(). The first message received is S_CLOSE_TEMPORARY. This
message is handled by the Window Manager and causes the display options menu to
be removed from the screen.

Chapter 9 — Display Options 101

102

5—The second message received is the display message determined by the selected
menu item. This message is passed by the main loop to the Window Manager, then
is dispatched by the Window Manager to CONTROL_WINDOW::Event() since
the control window is the front window on the screen. The control window evaluates
event.type (in this case a MSG_DISPLAY message)—resulting in the Option-
Display() member function being called.

The code responsible for this control is shown below:

EVENT_TYPE CONTROL_WINDOW: : Event (const UI_EVENT &event)
{

// Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp (event.type) ; // Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type) ; // Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow (event.type) ; // Window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay(event.type); // Display menu option selected.
else

ccode = UIW_WINDOW: :Event (event) ; // Unknown event.

// Return the control code.
return (ccode) ;

}

6—The OptionDisplay() member function evaluates the item’s value (passed down
through the item argument) to determine which type of display has been requested.
At this stage however, no display is re-created. Instead, an S_RESET_DISPLAY is
generated and passed through the system. The operation of creating and deleting
displays must be handled at the highest level of the program since that is the place
where the display object was initialized and the place where the display is destroyed
(when the scope of main ends). The following code shows how this message is sent:

void CONTROL_WINDOW: :OptionDisplay (EVENT_TYPE item)
{
#if defined (ZIL_MSDOS)

// Set up the default event.

UI_EVENT event (S_RESET_DISPLAY, TDM_NONE) ;

// Decide on the new display type.
if (item == MSG_25x40_MODE)
event .rawCode = TDM_25x40;
else if (item == MSG_25x80_MODE)
event .rawCode = TDM_25x80;
else if (item == MSG_43x80_MODE)
event .rawCode = TDM_43x80;

// Send a message to reset the display.
// (Code resides in main program loop) .
eventManager->Put (event) ;

#endif

}

Zinc Application Framework — Programming Techniques

7—Control returns once again to the main program loop by exiting the associated
Event() functions (see step 3).

L UI_EVENT_MANAGER 1

v —>
(: MAIN PROGRAM CONTROL j ®
@ -

IENCAPP_WINDOWEMANAGEI

8—The main loop picks up the S_RESET_DISPLAY message by calling event-
Manager->Get(). This message causes the program to:

A—Tell the event and window managers that the old display is about to be
deleted. This allows the managers to un-initialize any display dependent
information they may have.

B—The new display is constructed. The type of display is determined by
event.rawCode.

C—After the display has been reset, we must set event.data to point to the new
display object and call the event and window managers so they can re-initialize
themselves according to the new display and coordinate system.

The code associated with this process is shown below. (This code is taken from the
main() function.)

// Wait for user response.
EVENT_TYPE ccode;
UI_EVENT event;
do
{
// Get input from the user.
eventManager->Get (event) ;

// Check for a screen reset message.
if (event.type == S_RESET_DISPLAY)
{
#if defined (zZIL_MSDOS)
event.data = NULL;

// Tell the managers we changed the display.
windowManager->Event (event) ;
eventManager->Event (event) ;

delete display;
display = new UI_GRAPHICS_DISPLAY;

Chapter 9 — Display Options 103

if (!display->installed)
{

delete display;
display = new UI_TEXT_DISPLAY;
}

// Tell the managers we changed the display.
event.data = display;
eventManager->Event (event) ;
ccode = windowManager->Event (event) ;
#endif

}

else
ccode = windowManager->Event (event) ;

} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ;

If you carefully examine the CONTROL_WINDOW::OptionDisplay() member function
and the code in the main program loop, you may recognize that we could have removed
the OptionDisplay() function if we were to intercept all MSG_DISPLAY messages in
the main loop. The reason we did not put the display code in the main loop is mainly an
issue of consistency. Up until this point, we have let the control window and associated
member functions handle the program specific messages. In this case we are generating
a system message from the display member function, then intercepting the request at the
main level before letting the Window Manager process it.

104 Zinc Application Framework — Programming Techniques

CHAPTER 10 — WINDOW OPTIONS

The ZincApp program’s window options are shown under the “Window” menu item:

Control _D_ispiay L

Control objects »
Input objects

e —

oW...
Menu window...
Tool Bar window...

The array used to initialize these options is defined in the CONTROL_WINDOW
constructor. It contains the following information:

// Create the objects submenu.
UIW_POP_UP_ITEM *controlObjects = new UIW_POP_UP_ITEM("&Control objects");
*controlObjects

+ new UIW_POP_UP_ITEM("&Button window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,
WOF_NO_FLAGS, CONTROL_WINDOW: :Message, MSG_BUTTON_WINDOW)

+ new UIW_POP_UP_ITEM("&Generic window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,
WOF_NO_FLAGS, CONTROL_WINDOW: :Message, MSG_GENERIC_WINDOW)

+ new UIW_POP_UP_ITEM("&Icon window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,
WOF_NO_FLAGS, CONTROL_WINDOW::Message, MSG_ICON_WINDOW)

+ new UIW_POP_UP_ITEM("&MDI window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,

WOF_NO_FLAGS, CONTROL_WINDOW: :Message, MSG_MDI_WINDOW) ;

UIW_POP_UP_ITEM *inputObjects = new UIW_POP_UP_ITEM("&Input objects");

*inputObjects

+ new UIW_POP_UP_ITEM("&Date window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,
WOF_NO_FLAGS, CONTROL_WINDOW: : Message, MSG_DATE_WINDOW)

+ new UIW_POP_UP_ITEM/("&Number window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,
WOF_NO_FLAGS, CONTROL_WINDOW: :Message, MSG_NUMBER_WINDOW)

+ new UIW_POP_UP_ITEM("&String window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,
WOF_NO_FLAGS, CONTROL_WINDOW: :Message, MSG_STRING_WINDOW)

+ new UIW_POP_UP_ITEM("&Text window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,
WOF_NO_FLAGS, CONTROL_WINDOW: :Message, MSG_TEXT_WINDOW)

+ new UIW_POP_UP_ITEM("&Time window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,

WOF_NO_FLAGS, CONTROL_WINDOW: :Message, MSG_TIME_WINDOW) ;

UIW_POP_UP_ITEM *selectObjects = new UIW_POP_UP_ITEM("&Selection objects");
*selectObjects
+ new UIW_POP_UP_ITEM("&Combo Box window...", MNIF_NO_FLAGS,
BTF_NO_FLAGS, WOF_NO_FLAGS, CONTROL_WINDOW: : Message,
MSG_COMBO_BOX_WINDOW)
+ new UIW_POP_UP_ITEM("&List window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,
WOF_NO_FLAGS, CONTROL_WINDOW: :Message, MSG_LIST_WINDOW)
+ new UIW_POP_UP_ITEM("&Menu window...", MNIF_NO_FLAGS, BTF_NO_FLAGS,
WOF_NO_FLAGS, CONTROL_WINDOW: :Message, MSG_MENU_WINDOW)
+ new UIW_POP_UP_ITEM("&Tool Bar window...", MNIF_NO_FLAGS,
BTF_NO_FLAGS, WOF_NO_FLAGS, CONTROL_WINDOW: : Message,
MSG_TOOL_BAR_WINDOW) ;

Chapter 10 — Window Options

// Attach the sub-window objects to the control window.
*this

"

+ 4+ + + +

new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON(SYF_GENERIC)
new UIW_TITLE("Zinc Application")
& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS, controlItems)
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS, displayItems)
+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS)
+ controlObjects
+ inputObjects
+ selectionObjects)
+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM ("&Help", WNF_NO_FLAGS, helplItems)) ;

Window program flow

106

When a window option is selected, initial program flow is handled the same way that the
display options are handled. At the fifth step however, program flow is directed to the
OptionWindow() member function. A complete explanation of this flow follows. (The
corresponding steps are shown by the circled numbers in the figure.)

....... > UI_EVENT_MANAGER J
__>
C MAIN PROGRAM CONTROL
ad -« & v
S0 | ZINCAPP_WINDOW_MANAGER |
@b Control Window
' Control Objects »
Input Objects >
Selection Objects » .
(1)
= @@‘ *‘ %7
event information (2) [
B | CONTROL_WINDOW::Message l

1—The CONTROL_WINDOW::Message() function is called by UIW_POP_UP_-
ITEM::Event(). (The pop-up item inherits this calling sequence from the UIW_-
BUTTON class.)

EVENT_TYPE UIW_BUTTON: :Event (const UI_EVENT &event)
{

Zinc Application Framework — Programming Techniques

case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message() are a pointer to the selected window option
(this), a copy of the event that caused the user function to be called (tEvent), and the
logical interpretation (ccode) of the event that caused Event() to be called. (NOTE:
the variable tEvent needs to be a copy of event since event is a constant variable
whose values cannot be modified.)

2—The CONTROL_WINDOW::Message() function sends a request to remove the
temporary window options menu by sending an S_CLOSE_TEMPORARY message
through the system via the Event Manager. It then sends the window request through
the system by setting event.type to be the menu item’s value (i.e., one of the
ZINCAPP_WINDOW values defined in the windowOptions array) and then by
sending another message through the system.

EVENT_TYPE CONTROL_WINDOW::Message(UI_WINDOW_OBJECT *data,
UI_EVENT &event, EVENT_TYPE ccode)
{

if (ccode == L_SELECT)
{
for (UI_WINDOW_OBJECT *tObject = object->windowManager->First () ;
tObject && FlagSet(tObject—>woAdvancedFlags,
WOAF_TEMPORARY) ;
tObject = tObject->Next ())
object—>eventManager—>Put(UI_EVENT(S_CLOSE_TEMPORARY));
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;
}
return (ccode);

}

3—Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message() and then by exiting the UIW_POP_UP_ITEM, CONTROL_WINDOW
and ZINCAPP_EVENT_MANAGER classes’ Event() virtual functions.

Chapter 10 — Window Options 107

108

‘ UI_EVENT_MANAGER

il

1

4a —> ()
MAIN PROGRAM CONTROL)
@d) <— Z} + o
(4b)

80 IEINCAPP_WINDOW_MANAGER] 4
5

e

3b) Control Window

A |

CONTROL_WINDOW::Option_Window (6)

3a

4—The main loop picks up the program generated messages by calling event-
Manager->Get(). The first message received is S_CLOSE_TEMPORARY. This
message is handled by the Window Manager and causes the window options menu

to be removed from the screen.

5__The second message received is the window request determined by the selected
menu item. This message is passed by the main loop to the Window Manager and
is then dispatched by the Window Manager to CONTROL_WINDOW::Event()
since the control window is the front window on the screen. The control window
evaluates event.type (in this case a MSG_WINDOW message)—resulting in the
OptionWindow() member function being called.

The code responsible for this control is shown below:

EVENT_TYPE CONTROL_WINDOW: : Event (const UI_EVENT &event)

{

// Process the event according to its type.

if (ccode >= MSG_HELP)
OptionHelp (event.type) ;

else if

OptionEvent (event.type) ;

// Help menu option selected.

(ccode >= MSG_EVENT)

// Event menu option selected.

else if (ccode >= MSG_WINDOW)

OptionwWwindow(event.type);

// Window menu option selected.

else if (ccode >= MSG_DISPLAY)

OptionDisplay (event.type) ; // Display menu option selected.
else

ccode = UIW_WINDOW::Event (event) ; // Unknown event.

// Return the control code.

return

(

ccode) ;

Zinc Application Framework — Programming Techniques

6—The OptionWindow() member function evaluates the item’s value (passed down
through the item argument) to determine which type of window has been requested.
It then calls the associated member function that constructs the window. The new
window is attached to the Window Manager using the + operator overload. The
following code shows how this is done:

void CONTROL_WINDOW: :OptionWindow (EVENT_TYPE item)

{

// Get the specified window.

UI_WINDOW_OBJECT *object

switch (item)

{

case MSG_DATE_WINDOW :
object = UIW_WINDOW:
break;

case MSG_GENERIC_WINDOW :
object = UIW_WINDOW:
break;

case MSG_ICON_WINDOW :
object = UIW_WINDOW:
break;

case MSG_LIST_WINDOW :
object = UIW_WINDOW: :
break;

= NULL;

:New ("support.

:New ("support.

:New ("support.

New ("support.

case MSG_COMBO_BOX_WINDOW :

object =
break;

UIW_WINDOW: :

case MSG_MENU_WINDOW:
object = UIW_WINDOW:
break;

case MSG_NUMBER_WINDOW:
object = UIW_WINDOW:
break;

case MSG_STRING_WINDOW:
object = UIW_WINDOW:
break;

case MSG_TEXT_WINDOW:
object = UIW_WINDOW:
break;

case MSG_TIME_WINDOW:
object = UIW_WINDOW:
break;

case MSG_BUTTON_WINDOW:
object = UIW_WINDOW:
break;

case MSG_TOOL_BAR_WINDOW :
object = UIW_WINDOW: :
break;

case MSG_MDI_WINDOW:
object = UIW_WINDOW: :
break;

Chapter 10 — Window Options

:New ("support

New ("support.

:New ("support.

:New ("support.

:New ("support.

:New ("support.

:New ("support.

New ("support .

New ("support.

dat~WINDOW_DATE") ;

dat~WINDOW_GENERIC") ;

dat~WINDOW_ICON") ;

dat~WINDOW_LIST") ;

dat~WINDOW_COMBO_BOX") ;

dat~WINDOW_MENU") ;

dat~WINDOW_NUMBER") ;

.dat~WINDOW_STRING") ;

dat~WINDOW_TEXT") ;

dat~WINDOW_TIME") ;

dat~WINDOW_BUTTON") ;

dat~WINDOW_TOOL_BAR") ;

dat~WINDOW_MDI") ;

109

110

// Add the window object to the window manager.
if (object)
*windowManager + object;
}

You may have noticed that the object variable is defined to be a UI_WINDOW_-

OBIJECT pointer instead of a UIW_WINDOW pointer. This generic declaration

allows us to expand the program to attach other non-window objects (e.g., an icon).
At this point the new window is displayed on the screen and it becomes the front window
of the application. All subsequent events are processed by the new window until a change
is requested by the end-user. A description of the types of windows presented in this
menu item follows:

Generic—This window shows the basic window objects that are usually provided as
default objects to a window. These objects include:

¢ the window’s border (UIW_BORDER),

e the maximize button (UIW_MAXIMIZE_BUTTON),

e the minimize button (UIW_MINIMIZE_BUTTON),

e the system button (UIW_SYSTEM_BUTTON) and

e the title bar (UIW_TITLE).

In this function, the window is created by loading it from the .DAT file. If the
window were not loaded from the .DAT file, it could have been created by calling

UIW_WINDOW::Generic().

Button—This window shows the different types of buttons that can be used: regular
buttons, radio buttons, check boxes and bitmapped buttons.

Combo box—This window shows two combo box objects. One of the combo boxes
was implemented with string objects and the other with bitmapped buttons.

Date—This window shows the many variations available with the date class object.

Icon—This window shows several types of icon images that can either be attached
to a parent window, or directly to the screen.

List—This window shows the implementation of both a horizontal and a vertical list.

Zinc Application Framework — Programming Techniques

MDI window—This window was implemented as an MDI parent window that
contains some MDI child windows.

Menu—This window shows the use of pull-down menus. The source code shows
you how to create and attach pull-down and pop-up items into pull-down menus.

Number—This window shows several implementations of the UIW_BIGNUM,
UIW_INTEGER and UIW_REAL class objects.

String—This window shows several types of string objects that can be created with
Zinc Application Framework. These objects include the basic U'W_STRING object,
two types of UIW_FORMATTED_STRING class objects, and a multi-line text field
(UIW_TEXT) that only occupies part of its parent window.

Text—This window shows a full-window implementation of a UIW_TEXT object
and an associated vertical scroll bar.

Time—This window shows the many variations that can be used with the UIW_-
TIME class object.

Tool bar—This window shows a tool bar object that contains various window
objects.

Chapter 10 — Window Options 111

112 Zinc Application Framework — Programming Techniques

CHAPTER 11 — EVENT OPTIONS

The ZincApp program’s event option is shown under the “Event” menu item:

Control Display Window

The array used to initialize this option is defined in the CONTROL_WINDOW
constructor. It contains the following information:

static UI_ITEM eventItems[] =
{

{ MSG_EVENT_MONITOR, VOIDF (CONTROL_WINDOW: :Message) ,
"&Event monitor" MNIF_NO_FLAGS 1},
{0, 0, 01} // end of array

Yi

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON (SYF_GENERIC)
+ new UIW_TITLE("Zinc Application")
+ & (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS, controlItems)
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS, displayItems)
+ & (*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS)
+ controlItems
+ inputItems
+ selectItems)
+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helpltems));

Event program flow

When the event option is selected, initial program flow is handled the same way that the
window options are handled. At the fifth step however, program flow is directed to the
OptionEvent() member function.

A complete explanation of this flow follows. (The corresponding steps are shown by the
circled numbers in the figure.)

Chapter 11 — Event Options

>|7 UI_EVENT_MANAGER |

— >
(MAIN PROGRAM CONTROL)
I S
8¢/ | ZINCAPP_WINDOW_MANAGER |
@b Control Window
o Event Monitor
®
w A v
event information (2) - ‘
- | CONTROL_WINDOW::Message l

1—The CONTROL_WINDOW::Message() function is called by the UIW_POP_-
UP_ITEM::Event() function. (The pop-up item inherits the code below from the
UIW_BUTTON class.)

EVENT_TYPE UIW_BUTTON: :Event (const UI_EVENT &event)
{

case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent;
tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message() are a pointer to the selected event option (this),
a copy of the event that caused the user function to be called (¢Event), and the logical
interpretation (ccode) of the event that caused Event() to be called. (NOTE: the
variable tEvent needs to be a copy of event since event is a constant variable whose
values cannot be modified.)

2—The CONTROL_WINDOW::Message() function sends a request to remove the
temporary event option menu by sending an S_CLOSE_TEMPORARY message
through the system via the Event Manager. It then sends the event request through
the system by setting event.type to be MSG_EVENT and then by sending another
message through the system.

EVENT_TYPE CONTROL_WINDOW: :Message (UI_WINDOW_OBJECT *data,
UI_EVENT &event, EVENT_TYPE ccode)
{

114 Zinc Application Framework — Programming Techniques

if (ccode == L_SELECT)
{
for (UI_WINDOW_OBJECT *tObject = object->windowManager->First ()
tObject && FlagSet(tObject~>woAdvancedFlags,
WOAF_TEMPORARY) ;
tObject = tObject->Next ())
object->eventManager—>Put(UI_EVENT(S_CLOSE_TEMPORARY));
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;

H

}
return (ccode);

}

3—Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message() and then by exiting the UITW_POP_UP_ITEM, CONTROL_WINDOW
and ZINCAPP_WINDOW_MANAGER classes’ Event() virtual functions.

L UI_EVENT_MANAGER —l

%7 4a T 5a)
C MAIN PROGRAM CONTROL)
G o

4b)
ENCAPPﬁWINDOW_MANAGER o=

©ob)

Control Window

st g

EONTROL_WINDOW::OptionEvent %)

4—The main loop picks up the program generated messages by calling event-
Manager->Get(). The first message received is S_CLOSE_TEMPORARY. This
message is handled by the Window Manager and causes the event option menu to be
removed from the screen.

5—The second message received is the event message MSG_EVENT. This message
is passed by the main loop to the Window Manager, then is dispatched by the
Window Manager to CONTROL_WINDOW::Event() since the control window is
the front window on the screen. The control window evaluates event.type (in this
case the MSG_EVENT message)—resulting in the OptionEvent() member function
being called.

The code responsible for this control is shown below:

Chapter 11 — Event Options 115

EVENT_TYPE CONTROL_WINDOW: : Event (const UI_EVENT &event)
{

// Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp (event.type) ; // Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type) ; // Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow (event.type) ; // Window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay (event.type) ; // Display menu option selected.
else

ccode = UIW_WINDOW::Event (event) ; // Unknown event.

// Return the control code.
return (ccode);

}

6—The OptionEvent() member function creates the event monitor window and
attaches it to the Window Manager. (A full description of the event monitor is given
below.) The following code shows how this is done.

void CONTROL_WINDOW: :OptionEvent (EVENT_TYPE item)
{
// Create the event monitor and attach it to the window manager.
*windowManager
+ new EVENT_MONITOR;
}

At this point the event monitor (described in the next section) is displayed on the
screen and it becomes the front window of the application. All subsequent events
will either be processed directly or indirectly by the monitor. (Events are only
handled directly if the event monitor is the front window on the screen.)

Monitoring library events

116

Monitoring events in the ZincApp program requires the definition and use of two derived
classes: EVENT_MONITOR and ZINCAPP_WINDOW_MANAGER.
Event Monitor

The event monitor window is used to show the type of messages being processed by the
library.

Zinc Application Framework — Programming Techniques

A picture of this window is shown below:

Message: 00b5
wParam: oom2
“3a|anr ﬂ["]ﬂ["]ﬁz
Position: 15 0

Last event: MSWindows

" J

The Windows version of the event monitor window has five sections:

Message—The hex value of the Windows message is displayed in this field.
(NOTE: A translation table could be implemented so that a textual representation of
the message could be displayed.)

wParam—The wParam value of the event is displayed.
IParam—The /Param value of the event is displayed.
Position—The Position value of the event is displayed.

Last event—The last event section shows the interpreted value of the last event.
This can be any of the Zinc Application Framework system or logical messages, or
the interpreted keyboard or mouse code.

This window is implemented through a class called EVENT_MONITOR. The definition
of this class is contained in ZINCAPP.HPP. Its members are shown below:

class EVENT_MONITOR : public UIW_WINDOW
{
public:
EVENT_MONITOR (void) ;
EVENT_TYPE Event (const UI_EVENT &event) ;

Chapter 11 — Event Options

118

private:

#if defined (ZIL_MSDOS)

UIW_STRING *keyboard([3];
UI_EVENT kEvent;
UIW_STRING *mouse[3];
UI_EVENT mEvent;

#elif defined (ZIL_MSWINDOWS)
UIW_STRING *windowsMessage[5];
MSG wMsg;

#elif defined(ZIL_0S2)

UIW_STRING *windowsMessage[5];
OMSG oMsg;

#elif defined (ZIL_MOTIF)

UIW_STRING *motifMessage[3];
XEvent xEvt;

#endif
UIW_STRING *system;

UI_EVENT sEvent;

}:

A description of the class’ derivation and members follows:

UIW_WINDOW is the base class for the EVENT_MONITOR class. The main reason
for deriving from the base UIW_WINDOW is that it provides a very clean way of
attaching a window to the screen that can receive message information, and a clean
way of removing the window and monitoring capability once it is removed from the
screen.

EVENT_MONITOR() is the constructor. When the event monitor window is attached
to ZincApp’s window manager (described below), it receives all events that pass
through the system, after the front window has processed the event. This allows the
front window to process the event normally, then for the event monitor to look at the
type of action that was performed. If we were to derive the event monitor from UI_-
DEVICE (such as the MACRO_HANDLER discussed in a later section) we would
only receive raw input information. By positioning ourselves in the window manager,
we are able to see how raw events are handled by an object. For example, pressing
the left-mouse button on the title bar produces a series of messages ending in
“Move.” Pressing the left-mouse button in a text field however, produces the
“Begin mark” message. If this class were positioned in the Event Manager, it would
only interpret a left-down click for both types of events.

Event() is the function that processes the logical event. There are two types of
events the EVENT_MONITOR::Event() function can receive. The first type is
messages passed to the window in the normal course of operation. These messages
would be passed to the window if it were the front window on the screen, or if a
mouse message overlapped the window’s screen region. The second type of message
is sent to the event monitor as a result of it being a monitor type window. These
messages are received after they have been processed by the window manager. In
addition, these special events are packaged by the window manager into a new event

Zinc Application Framework — Programming Techniques

and passed to the member function by the window manager. The window manager

packages these events in the following fashion:

event.type is the logical event returned by the receiving object.

event.rawCode is always OXFFFF if the event has already been passed to the
front window. This special value lets us determine whether the original message
was intended for the event monitor window (if it is front window on the screen)

or whether the event has already been passed through the system.

event.data is the original event that was passed through the system.

There are four main sections to EVENT_MONITOR::Event(). The first section
sets up the event information and determines whether the event is intended for the
window interpretation, or whether the event needs to be passed to the base UIW_-
WINDOW class object for processing. The code associated with this section is

shown below:

EVENT_TYPE EVENT_MONITOR::Event (const UI_EVENT &event)
{

// See if it is a normal event.
if (event.rawCode != 0xFFFF)
return (UIW_WINDOW::Event (event));

// Check for new keyboard event.

UI_EVENT *tEvent = (UI_EVENT *)event.data;
#if defined (ZIL_MSDOS)

if (tEvent->type == E_KEY)

// Check for new mouse event.
else if (tEvent->type == E_MOUSE)

#elif defined (ZIL_MSWINDOWS)
if (tEvent->type == E_MSWINDOWS)

#elif defined (ZIL_0S82)
if (tEvent->type == E_0S2)

Chapter 11 — Event Options

(section 1)

(section 2)

(section 3)

119

120

#elif defined (ZIL_MOTIF)

if (tEvent->type == E_MOTIF)
#endif
// Check for new logical event. (section 4)

if (sEvent.type != event.type)

// Return the logical event.
return (event.type);

}

keyboard and kEvent contain information about the last key that was pressed. (See
the “Last key” description above.) These variables are available in the DOS
environment only. The variable kEvent keeps track of the last event for optimization
so that only those parts of the key that have changed will be updated. When the
EVENT_MONITOR::Event() routine is called, these variables are changed to
reflect the new event (passed as an argument to the event monitor’s Event()
function). The code responsible for this change is shown below:

EVENT_TYPE EVENT_MONITOR::Event (const UI_EVENT &event)
{

UI_EVENT *tEvent = (UI_EVENT *)event.data;

// Check for new keyboard event.
if (tEvent->type == E_KEY)
{
char string[32];
if (kEvent.rawCode != tEvent->rawCode)
{
sprintf (string, "$%$04x", tEvent->rawCode);
keyboard[0]->Information (SET_TEXT, string);

]
if (kEvent.key.shiftState != tEvent->key.shiftState)
i
sprintf (string, "%02x", tEvent->key.shiftState);
keyboard[1]->Information (SET_TEXT, string) ;

if (kEvent.key.value != tEvent->key.value)
{
sprintf (string, "%c", tEvent->key.value) ;
keyboard[2]->Information (SET_TEXT, string);
}
kEvent = *tEvent;
}

mouse and mEvent contain information about the last mouse event. These variables
are available in the DOS environment only. They work just like the keyboard

Zinc Application Framework — Programming Techniques

variables keyboard and kEvent except that the information is maintained for the
mouse. The variable mevent keeps track of the last event for optimization so that
only those parts of the mouse event that have changed will be updated. When the
EVENT_MONITOR::Event() routine is called, these variables are changed to
reflect the new event (passed as an argument to the event monitor’s Event()
function). The code responsible for this change is shown below:

EVENT_TYPE EVENT_MONITOR: :Event (const UI_EVENT &event)
{
UI_EVENT *tEvent = (UI_EVENT *)event.data;

// Check for new mouse event.
else if (tEvent->type == E_MOUSE)
¢
char string[32];
if (mEvent.rawCode != tEvent->rawCode)
{
sprintf (string, "%04x", tEvent->rawCode);
mouse[0]->Information (SET_TEXT, string);
}
if (mEvent.position.column != tEvent->position.column)
{
sprintf (string, "%$03d", tEvent->position.column);
mouse[l]->Information (SET_TEXT, string);

if (mEvent.position.line != tEvent->position.line)

sprintf (string, "%03d", tEvent->position.line);
mouse([2] ->Information (SET_TEXT, string);

}

mEvent = *tEvent;

}

* windowsMessage and wMsg contain the information from the last event that was
received by the event monitor in the Windows environment. windowsMessage and
oMsg contain the information from the last event that was received by the event
monitor in the OS/2 environment. motifMessage and xEvt contain the information
from the last event that was received by the event monitor in the Motif environment.
The variables wMsg, oMsg and xEvt keep track of the last event for optimization so
that only those parts of the event that have changed will be updated. When the
EVENT_MONITOR::Event() routine is called, these variables are changed to
reflect the new event (passed as an argument to the event monitor’s Event()
function). For example, the code responsible for this change in Windows is shown
below:

EVENT_TYPE EVENT_MONITOR: :Event (const UI_EVENT &event)
{

Chapter 11 — Event Options 121

// See if it is a normal event.
if (event.rawCode != OxFFFF)
return (UIW_WINDOW: :Event (event));

// Check for new keyboard event.
UI_EVENT *tEvent = (UI_EVENT *)event.data;

#if defined (ZIL_MSDOS)

#elif defined (ZIL_MSWINDOWS)
if (tEvent->type == E_MSWINDOWS)
{
MSG msg = event.message;
char string[32];
if (wMsg.message != msg.message)
4
sprintf (string, "%04x", msg.message);
windowsMessage[0] ->Information (SET_TEXT, string);

if (wMsg.wParam != msg.wParam)

sprintf (string, "%04x", msg.wParam) ;
windowsMessage[1l] ->Information (SET_TEXT, string);

if (wMsg.lParam != msg.lParam)

sprintf (string, "%08x", msg.lParam);
windowsMessage[2]->Information (SET_TEXT, string);

if (wMsg.pt.x != msg.pt.x)

sprintf (string, "%d", msg.pt.x):
windowsMessage[3]->Information (SET_TEXT, string);

if (wMsg.pt.y != msg.pt.y)
sprintf (string, "%d", msg.pt.y);
windowsMessage[4]->Information (SET_TEXT, string);
}
wMsg = msg;

}
#elif defined(ZIL_0S2)
#elif defined (ZIL_MOTIF)
#endif

// Return the logical event.
return (event.type);

}

o system and sEvent contain information about the last interpreted event that was
returned by the window object. These variables work just like the mouse variables
mouse and mEvent except that the information is maintained for the logical or system

122 Zinc Application Framework — Programming Techniques

event. The variable sEvent keeps track of the last event for optimization so that only
changes in the event cause the event field to be updated. When the EVENT .-
MONITOR::Event() routine is called, these variables are changed to reflect the new
event (passed as an argument to the event monitor’s Event() function). The code
responsible for this change is shown below (only a partial list of the event/string pair
table is shown):

EVENT_TYPE EVENT_MONITOR: :Event (const UI_EVENT &event)
{
UI_EVENT *tEvent = (UI_EVENT *)event.data;

// Declare the event type/name pairs.
static struct EVENT_PAIR

int type;
char *name;
} eventTable[] =

{ E_KEY, "Key" }, // Raw events.

{ E_MOUSE, "Mouse" 1},

{ E_CURSCR, "Cursor® },

{ E_DEVICE, "Device" 1},

{ S_ERROR, "Error™ }, // System events.
{ S_MINIMIZE, "Minimize" },

{ S_MAXIMIZE, "Maximize" },

{ L_EXIT, "Exit™ '}, // Logical events.
{ L_VIEW, "View" },

{ L_SELECT, "Select" },

{ MSG_25x40_MODE, "25x40 Text Mode" },// ZINCAPP events
{ MSG_25x80_MODE, "25x80 Text Mode" }

{ MSG_43x80_MODE, "43x80 Text Mode" }

{ MSG_GRAPHICS_MODE, "Graphics Mode" 1},

{00 0) // End of array.

// Check for new logical event.

if (sEvent.type != event.type)
{
char *name = "<Unknown>";
for (int i = 0; eventTable[i].type; i++)
if (event.type == eventTable[i].type)

{
name = eventTable[i].name;
break;
}
system->Information (name) ;
sEvent = event;

Chapter 11 — Event Options 123

124

Window Manager

The event monitor (described previously) receives all interpreted messages by attaching
itself to a Zinc Application window manager class called ZINCAPP_WINDOW_-
MANAGER.

The definition of the ZINCAPP_WINDOW_MANAGER class is defined in ZINCAPP.-
HPP. Its definition is shown below:

class ZINCAPP_WINDOW_MANAGER : public UI_WINDOW_MANAGER
{
public:
7ZINCAPP_WINDOW_MANAGER (UI_DISPLAY *display,
UI_EVENT_MANAGER *eventManager)
UI_WINDOW_MANAGER (display, eventManager,
ZINCAPP_WINDOW_MANAGER: : ExitFunction) { }
virtual EVENT_TYPE Event (const UI_EVENT &event) ;

private:
static EVENT_TYPE ExitFunction(UI_DISPLAY *display,
UI_EVENT_MANAGER *eventManager, UI_WINDOW_MANAGER *windowManager) ;
}i

A description of the class’ derivation and members follows:

e UI_WINDOW_MANAGER is the base class for the ZINCAPP_WINDOW_-
MANAGER class. The derivation from this class allows us to get all interpreted
messages before they are passed to the main control loop and to send the event
information to any event monitor windows.

e ZINCAPP_WINDOW_MANAGER() is the ZincApp window manager constructor.
It calls the base UL WINDOW_MANAGER with the display and eventManager
supplied by its arguments but also provides an exitFunction pointer that is the
ZINCAPP_WINDOW_MANAGER::ExitFunction() static member function
(described below). The ZincApp window manager class is constructed in the main
section of our program, just the way a normal window manager would be
constructed. The code below shows how this is done:

// Initialize the ZincApp window manager and add the control window.
ZINCAPP_WINDOW_MANAGER *windowManager =
new ZINCAPP_WINDOW_MANAGER(display, eventManager);

UI_WINDOW *window = new CONTROL_WINDOW;

*windowManager
+ new window;

Zinc Application Framework — Programming Techniques

* Event() is the function that processes the event information. It contains two major
sections:

EVENT_TYPE ZINCAPP_WINDOW_MANAGER: :Event (const UI_EVENT &event)
{

// Allow the base window manager to process the event.

EVENT_TYPE ccode = UI_WINDOW_MANAGER: :Event (event) ; (section 1)
// Send the event to any event monitor windows.
for (UI_WINDOW_OBJECT *object = First(); object;
object = object->Next())
if (object->userFlags == MSG_EVENT_MONITOR && (section 2)
event.type != S_RESET_DISPLAY)

{
UI_EVENT tEvent (event.type, OxFFFF);
tEvent.data = (void *)&event;
object->Event (tEvent) ;

}

// Return the control code.
return (ccode);

The first section calls UL WINDOW_MANAGER::Event so that it can dispatch the
message to the proper window.

The second section is used to dispatch the interpreted message to any event
monitoring windows. It determines these windows by looking at the object’s
userFlags. 1If the flag is set to be MSG_EVENT_MONITOR (by EVENT._-
MONITOR::Event()) and if the event type is not S_RESET_DISPLAY, the
message is sent to the device. This event is modified to contain the logical code in
event.type, the value OXFFFF in event.rawCode, and the raw event is pointed to by
event.data.

* ExitFunction() is a function that displays a modal exit window to the screen.

A picture of this window is shown below:

This will close the Zinc Application.

Chapter 11 — Event Options 125

If the user selects “OK” an L_EXIT message is passed through the system via the
Event Manager, and program execution ceases. Otherwise, the window is removed
from the screen and program flow continues in a normal fashion.

126 Zinc Application Framework — Programming Techniques

CHAPTER 12 — HELP OPTIONS

The ZincApp program’s help options are shown under the “Help” menu item:

Display Window Event |

Control

Mouse
Commands
Procedures
Objects
Using help

About ...

The array used to initialize these options is defined in the CONTROL_WINDOW
constructor. It contains the following information:

static UI_ITEM helpOptions[] =
{

{ MSG_HELP_KEYBOARD, VOIDF (CONTROL_WINDOW: : Message) , "&Keyboard",
MNIF_NO_FLAGS 1},

{ MSG_HELP_MOUSE, VOIDF (CONTROL_WINDOW: : Message) , "&Mouse",
MNIF_NO_FLAGS }

{ MSG_HELP_COMMANDS, VOIDF (CONTROL_WINDOW: : Message) , "&Commands",
MNIF_NO_FLAGS 1},

{ MSG_HELP_PROCEDURES, VOIDF(CONTROL_WINDOW::Message), "&Procedures",
MNIF_NO_FLAGS }

{ MSG_HELP_OBJECTS, VOIDF(CONTROL_WINDOW::Message), "&0Objects™",
MNIF_NO_FLAGS }

{ MSG_HELP_HELP, VOIDF (CONTROL_WINDOW: : Message) , "&Using help",
MNIF_NO_FLAGS 1},

{0, 0, gy
MNIF_SEPARATOR },

{ MSG_HELP_ZINCAPP, VOIDF(CONTROL_WINDOW::Message), "&About ...",

MNIF_NO_FLAGS },
{0, 0,0, 0} // End of array.
};

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON (SYF_GENERIC)
new UIW_TITLE("Zinc Application")
& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM ("&Control", WNF_NO_FLAGS, controlItems)
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS, displayItems)
+ & (*new UIW_PULL_DOWN_ITEM ("&Window", WNF_NO_FLAGS)
+ controlItems
+ inputItems
+ selectionItems)

+ + + + +

Chapter 12 — Help Options 127

+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helpItems));

Help program flow

When a help option is selected, initial program flow is handled the same way that the
event options are handled. At the fifth step however, program flow is directed to the
OptionHelp() member function. A complete explanation of this flow follows. (The
corresponding steps are shown by the circled numbers in the figure.)

______ »F UI_EVENT_MANAGER J

—>
MAIN PROGRAM CONTROL)
3d -« * v

8¢ } ZINCAPP_WINDOW_MANAGER]

@b Control Window

Commands
Procedures

ng:c tﬁel
Roo "

w by

event information (2) |
| CONTROL_WINDOW::Message ’

Q)

1—The CONTROL_WINDOW::Message() function is called by UTW_POP_UP_-
ITEM::Event(). (The pop-up item inherits the code below from UIW_BUTTON.)

EVENT_TYPE UIW_BUTTON: :Event (const UI_EVENT &event)
{

case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent;
tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message() are a pointer to the selected help option (this)
and a copy of the event that caused the user function to be called (tEvent). (NOTE:
the variable tEvent needs to be a copy of event since event is a constant variable
whose values cannot be modified.)

128 Zinc Application Framework — Programming Techniques

2—The CONTROL_WINDOW::Message() function sends a request to remove the
temporary help options menu by sending an S_CLOSE_TEMPORARY message
through the system via the Event Manager. It then sends the help request through the
system by setting event.type to be the menu item’s value (i.e., one of the MSG_HELP
values defined in the helpOptions array).

EVENT_TYPE CONTROL_WINDOW: : Message (UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)

1
if (ccode == L_SELECT)
{

for (UI_WINDOW_OBJECT *tObject = object->windowManager->First () ;
tObject && FlagSet (tObject->woAdvancedFlags,
WOAF_TEMPORARY) ; tObject = tObject->Next());
object~>eventManager7>Put(UI_EVENT(S_CLOSE_TEMPORARY));
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;
}
return (ccode);

y

3—Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message() and then by exiting the UIW_POP_UP_ITEM, CONTROL_WINDOW
and ZINCAPP_EVENT_MANAGER classes’ Event() virtual functions.

L UI_EVENT_MANAGER —]

%7 4a) —> 5a)
(MAIN PROGRAM CONTROL j
4b
| ZINCAPP_WINDOW_MANAGER \ P

Control Window

Lot

| CONTROL_WINDOW::OptionHelp |6

4—The main loop picks up the program generated messages by calling event-
Manager->Get(). The first message received is S_CLOSE_TEMPORARY. This
message is handled by the Window Manager and causes the help options menu to be
removed from the screen.

5—The second message received is the help message determined by the selected

menu item. This message is passed by the main loop to the Window Manager, then
is dispatched by the Window Manager to CONTROL_WINDOW::Event() since

Chapter 12 — Help Options 129

130

the control window is the front window on the screen. The control window evaluates
event.type (in this case a MSG_HELP message)—resulting in the OptionHelp()
member function being called. The code responsible for this control is shown below:

EVENT_TYPE CONTROL_WINDOW: : Event (const UI_EVENT &event)

{

}

EVENT_TYPE ccode = event.type;

// Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp (event.type); // Help option.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type) ; // Event option.
else if (ccode >= MSG_WINDOW)

OptionWindow (event.type) ; // Window option.
else if (ccode >= MSG_DISPLAY)

OptionDisplay (event.type) ; // Display option.
else

ccode = UIW_WINDOW: :Event (event) ; // Unknown event.

// Return the control code.
return (ccode);

6—The OptionHelp() member function evaluates the item’s value (passed down
through the item argument) to determine which type of help context has been
requested. It then sends the help request to the help system by calling Display-
Help(). The following code shows how this is done:

void CONTROL_WINDOW: :OptionHelp (EVENT_TYPE item)

{

// Declare the help message/context pairs.
static struct HELP_PAIR
{
int itemValue;
USHORT helpContext;
} helpTable[] =
{

{ MSG_HELP_KEYBOARD, HELP_KEYBOARD },

{ MSG_HELP_MOUSE, HELP_MOUSE 1},

{ MSG_HELP_COMMANDS, HELP_COMMANDS 1},

{ MSG_HELP_PROCEDURES, HELP_PROCEDURES },
{ MSG_HELP_OBJECTS, HELP_OBJECTS 1},

{ MSG_HELP_HELP, HELP_HELP 1},

{ MSG_HELP_ZINCAPP, HELP_GENERAL },

{ 0, 0 } // End of array.

}i

// Get the help context then call the help system.
USHORT helpContext = NO_HELP_CONTEXT;
for (int i = 0; helpTable[i].itemValue; i++)
if (item == helpTable[i].itemValue)
{
helpContext = helpTable[i].helpContext;
break;
}
helpSystem->DisplayHelp (windowManager, helpContext);

Zinc Application Framework — Programming Techniques

Once the help system’s DisplayHelp() function has been called the help window is
attached to the Window Manager.

For example, the help request MSG_HELP_ZINCAPP causes the following help window
to appear:

[Welcome to the Zinc Application program p 0
lithe various components found in the library. Use the mouse to select an item from the main
enu or press the <Alt> key in combination with the first letter of the item.

essing <F1> at any time will display a context sensitive help (if available). To exit at any
me press <Alt+F4> from the main window.

ess <Alt+F4> to continue...

At this point the help window becomes the front window of the application. All
subsequent events are processed by the help window until a change is requested by the
end-user.

NOTE: The help window is not a modal window, thus other windows can be selected
while the help window is on the screen. In addition, only one help window is defined for
an application. If the help window is already present, or if it has been moved and sized
by a previous help request, the window is presented in its last position with the new help
information shown in its title and text fields.

General library help

In addition to the help information provided through the main control menu, context
sensitive help is available by simply pressing <F1> during the application. Each window
created in the ZincApp program has a pre-defined help context. This context is specified
when the window is constructed. For example, the main control window has HELP_-
MAIN_CONTROL specified as its help context. The code below shows where this
context is specified:

CONTROL_WINDOW: : CONTROL_WINDOW (void)
UIW_WINDOW(O, 0, 52, 13, WOF_NO_FLAGS, WOAF_LOCKED, HELP_MAIN_CONTROL)
{

}

Chapter 12 — Help Options 131

In general, window help is managed by the UL WINDOW_OBJECT::Event() function.
This control is similar to that shown in the steps above. After the <F1> key is pressed
the Window Manager dispatches the message to the front window. If the window has an
accompanying help context, the help system is called with the type of help associated with
the window. (In the case of the control window it would be a request for the HELP_-
MAIN_CONTROL help context.) Otherwise, general help is requested by sending NO
_HELP_CONTEXT to the helpSystem->DisplayHelp() function. The help system
receives this message and replaces it with the general help specified when the help system
was constructed. In our application the general help was specified to be HELP_-
GENERAL.

// Initialize the help and error systems.

UI_WINDOW_OBJECT: :errorSystem = new UI_ERROR_SYSTEM;

UI_WINDOW_OBJECT: :helpSystem = new UI_HELP_WINDOW_SYSTEM("support",
windowManager, HELP_GENERAL) ;

See “Chapter 2—Help and Error Systems” of this manual for more information on using
the help system.

132 Zinc Application Framework — Programming Techniques

SECTION IV
DERIVED CLASSES

Section IV — Derived Classes 133

134 Zinc Application Framework — Programming Techniques

CHAPTER 13 — MACRO DEVICE

This tutorial shows you how to create a keyboard macro input device. When we are
finished, you should understand:

* the design used to implement a simple keyboard macro

e the basic design rules that control the operation of input devices within Zinc
Application Framework

* the type of information needed to initialize the UL_DEVICE base class

The source code associated with this program is located in the \ZINC\TUTOR\MACRO
subdirectory. It contains the following files:

MACRO.CPP—This file contains the macro device member functions MACRO _-
HANDLER::Event() and MACRO_HANDLER::Poll(), as well as the main
program loop (UI_APPLICATION::Main()).

*.DEF, *. RC—These files are the environment specific definition and resource files
required when compiling for Windows or 0S/2. (NOTE: The W*.* files are for
Windows and the O*.* files are for 0S/2.)

*.MAK—These files are the compiler-dependent makefiles associated with the Macro
program. (See “Chapter 1—Initializing the Library” for information on compiling
for each Zinc-supported platform.)

Program execution

Let’s begin by looking at how the keyboard macro operates in a sample application. To
do this, compile and run the application MACRO.EXE. The following window should
appear on the screen:

Chapter 13 — Macro Device 135

The current object in the window is a text object. (It is a non-field region so it takes up
the entire region within the window.) You should be able to type text information into
this window. In addition, four simple macro keys have been implemented:

Pressing <F5> causes the text “Macro #1” to be entered into the text window.
Pressing <F6> causes the text ‘“Macro #2” to be entered into the text window.
Pressing <F7> causes the text “Macro #3” to be entered into the text window.
Pressing <F8> causes the text “Macro #4” to be entered into the text window.

When you are finished experimenting with the program, exit by either selecting “Close”
from the system button’s pop-up menu, or by pressing <Alt+F4>.

Class definition

The macro keys described above are implemented as a single input device called
MACRO_HANDLER. This device is created and attached to the Event Manager using
the + operator. The following code shows this implementation:

UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;
*eventManager

+ new MACRO_HANDLER (macroTable) ;

136 Zinc Application Framework — Programming Techniques

The definition of the macro device is given below:

const EVENT_TYPE E_MACRO = 89;

struct MACRO_PAIR

{
RAW_CODE rawCode;
char *macro;

}i

class MACRO_HANDLER : public UI_DEVICE
{
public:
MACRO_HANDLER (MACRO_PAIR *_macroTable) : UI_DEVICE (E_MACRO, D_OFF),
macroTable (_macroTable) { installed = TRUE; }
EVENT_TYPE Event (const UI_EVENT &event) ;

private:
MACRO_PAIR *macroTable;
MACRO_PAIR *currentMacro;
int offset;

void Poll (void) ;
¥i

This class uses the following definitions and member variables:

* E_MACRO is a constant value that is used to uniquely identify the macro device.
Zinc Application Framework pre-defines the values for the keyboard, mouse and
cursor devices but leaves other values open for programmer-defined input devices.
The significance of the value 89 will be discussed later in this chapter.

* MACRO_PAIR is a structure that allows you to define a keyboard/macro equivalent
pair. The definition of the four macro keys we used in our sample program is sho
wn below:

MACRO_PAIR macroTable[] =
{

F5, "Macro #1."
F6, "Macro #2."
F7, "Macro #3."
F8, "Macro #4."
0, NULL }

}
}
}
}

’
'
’
)

Ry A

}:

The entry { 0, NULL } is used as an end-of-array indicator. In addition, the use of
F5, F6, F7 and F8 in the array above requires us to define a constant value called
USE_RAW_KEYS. This definition allows us to have access to the raw DOS scan
codes defined in UL_EVT.HPP.

* macroTable is a pointer to the table that contains the rawCode/macro pairs to be
matched. In our program this table is macroTable (shown above).

Chapter 13 — Macro Device 137

e currentMacro is a pointer to the current, or active, macro (if any). This value is reset
whenever a new macro key is pressed.

e offset is a value that gives the position of the current keyboard input within the
currentMacro->macro character array. It is used when the macro device feeds
keyboard information into the Event Manager’s input queue. (The terms “input
queue” and “‘event queue’’ are synonymous.)

Conceptual operation

The conceptual operation of the macro device, after it has been attached to the Event
Manager, is shown in the figure below:

‘ Keyboard Mouse Cursor Macro

I UI_EVENT_MANAGER

(&) % %7
g MAIN LOOP 08

VIS

{ Ul_WINDOW_MANAGER]

This operation can be described through the following steps. (The corresponding steps
are shown by the circled numbers in the figure.)

1—The device is polled (i.e., its Poll() routine is called) whenever the programmer
calls eventManager—>Get(). If a macro key has just been pressed, the process goes
to the second step. If the macro device is currently enabled (i.e., feeding information
into the input queue) the process goes to the third step. Otherwise, program flow
returns to the main. The code associated with this step is shown below. (NOTE:
The step identifications to the right are not part of the actual code.)

void MACRO_HANDLER: :Poll(void) (step 1)
i
// See if any events are in the event manager’s input queue.

UI_EVENT event;
static int emptyQueue = TRUE;

138 Zinc Application Framework — Programming Techniques

if (emptyQueue)
emptyQueue = eventManager->Get (event,
Q_NO_POLL | Q NO_BLOCK | Q NO_DESTROY | Q_BEGIN) ;

// Check for environment-specific keyboard events. (step 2)
#if defined (ZIL_MSWINDOWS)
if (state == D_OFF && !emptyQueue && event.type == E_MSWINDOWS &&
event .message.message == WM_KEYDOWN)

{

#elif defined (ZIL_0S2)
if (!emptyQueue && event.type == E_0S2 &&
event .message.msg == WM_CHAR)
{

#elif defined (ZIL_MOTIF)

if (!emptyQueue && event.type == E_MOTIF &&
event.message.type == KeyPress)
{
ffendif
}
// See if the event is a macro key. (step 3)
if (state == D_OFF && !eventQueue && event.type == E_KEY)
{
}
// Put macro information into the input queue. (step 4)
if (state == D_ON && emptyQueue)
{

You may have noticed that eventManager->Get() is called with several parameters.
Since we are getting input while in an input device function, we must be very careful
not to recursively call eventMangager->Get(). The way we protect against further
recursion is to set the Q_NO_POLL flag. This prevents the Event Manager from
calling any other input devices. The Q _NO_BLOCK flag prevents the Event
Manager from stopping program execution until an event is detected. We set this
since we only want to “‘check” the input queue to see if an event is available. (A
value of 0 is returned if there is an event in the queue. Otherwise, a negative value
is returned.)

Chapter 13 — Macro Device 139

140

Next, we do not want to destroy the contents of the queue since we are only looking
for special keyboard events. The way this is done is by setting the Q_NO_-
DESTROY flag. This allows us to obtain a copy of the event information without
removing it from the queue. The Q_BEGIN flag is used to get information from the
beginning of the queue, rather than from the end.

2—The second step is to check for events that are specific to a particular
environment. If these types of events are received, they are translated to the generic
Zinc event format for processing.

3—The third step is only executed if a new macro key has been pressed and the key
has been entered into the input queue by the UID_KEYBOARD device. In this step,
the type of macro is determined. If a valid macro key has been entered, all other
input devices are shut off so that they won’t feed additional information into the
queue while we are putting in our macro events. Next, the original macro key is
removed from the Event Manager’s input queue and the macro device is enabled.
The first character of the new macro is placed into the input queue by continuing to
the third step (i.e., setting the emptyQueue flag to be TRUE causes step 3 to be
executed). The code below shows how this step is implemented:

void MACRO_HANDLER: :Poll (void) (step 1)
{
// See if any events are in the event manager’s input queue.
UI_EVENT event;
int emptyQueue = eventManager->Get (event,
Q_BEGIN | Q_NO_DESTROY | Q_NO_BLOCK | Q_NO_POLL) ;

// Check for environment-specific keyboard events. (step 2)
#if defined (ZIL_MSWINDOWS)
if (state == D_OFF && !emptyQueue && event.type == E_MSWINDOWS &&
event .message.message == WM_KEYDOWN)

{

#elif defined (ZIL_0S2)
if (!emptyQueue && event.type == E_0S2 &&
event .message.msg == WM_CHAR)
{

#elif defined (ZIL_MOTIF)
if (!emptyQueue && event.type == E_MOTIF &&
event .message.type == KeyPress)
{

#endif

Zinc Application Framework — Programming Techniques

}

// See if the event is a macro key. (step 3)
if (state == D_OFF && !emptyQueue && event.type == E_KEY)
{

for (int i = 0; macroTable[i].rawCode && !emptyQueue; i++)

if (event.rawCode == macroTable[i].rawCode)

{
// Turn off all other devices while we feed the macro.
eventManager->DeviceState (E_DEVICE, D_OFF);
eventManager->Get (event, Q BEGIN | Q_NO_POLL);
currentMacro = ¯oTable[i];
offset = 0;
state = D_ON;
// Set emptyQueue to be TRUE so we go to the next step.
emptyQueue = TRUE;

break;
}
}
// Put macro information into the input queue (step 4)
if (state == D_ON && emptyQueue)

{

4—The fourth step is only executed if the macro device has been enabled. Once the
macro device is enabled, it feeds one event into the input queue each time its Poll()
routine is called, but only if there are no other events waiting to be processed by the
Event Manager. Once the macro device runs out of input information, it changes its
state to D_OFF. This prevents the third step from being executed until another
macro key is pressed.

void MACRO_HANDLER: :Poll (void) (step 1)
{
// See if any events are in the event manager’s input queue.
UI_EVENT event;
int emptyQueue = eventManager->Get (event,
Q_BEGIN | Q_NO_DESTROY | Q_NO_BLOCK | Q_NO_POLL) ;

// Check for environment-specific keyboard events. (step 2)
#if defined (ZIL_MSWINDOWS)
if (state == D_OFF && !emptyQueue && event.type == E_MSWINDOWS &&
event .message.message == WM_KEYDOWN)

{

#elif defined (ZIL_0S2)
if (!emptyQueue && event.type == E_0S2 &&
event .message.msg == WM_CHAR)
{

Chapter 13 — Macro Device 141

#elif defined (ZIL_MOTIF)

if (!emptyQueue && event.type == E_MOTIF &&
event .message.type == KeyPress)
{
#endif
}
// See if the event is a macro key. (step 3)
if (state == D_OFF && !emptyQueue && event.type == E_KEY)
{
}
// Put macro information into the input queue. (step 4)
if (state == D_ON && emptyQueue)

{

event.type = E_KEY;

event.rawCode = currentMacro->macro[offset];

event .key.value = event.rawCode;

event .key.shiftState = 0;

eventManager->Put (evert, Q_END);

if (!currentMacro->macro[++offset])

{
eventManager->DeviceState (E_DEVICE, D_ON);
state = D_OFF;

}

5—Program flow is returned to the programmer in two stages. First, control returns
to the Event Manager when the input devices return from their Poll() functions, then
if an event is present in the input queue, program control returns to the main loop.

6—The main program loop processes all event information, including the macro key
expansions, by calling windowManager->Event(). The main program loop then
exits if the L_EXIT message is received, or it returns to the first step to get the next
event.

Class information
The MACRO_HANDLER class constructor is defined as an in-line function.

class MACRO_HANDLER : public UI_DEVICE
{
public:
MACRO_HANDLER (MACRO_PAIR *_macroTable) : UI_DEVICE (E_MACRO, D_OFF),
macroTable (_macroTable) { installed = TRUE; }

142 Zinc Application Framework — Programming Techniques

Base class initialization

The base UI_DEVICE class constructor is called before any class specific information is
set. It requires the specification of the device’s type (E_MACRO) and its initial state
(D_OFF).

The Event Manager uses the input device type to determine the device’s order in the
device list. Input devices are arranged in the device list in ascending type order. Thus,
the order of the four input devices we attached to the Event Manager is:

UID_KEYBOARD—Its value is 10, the number associated with the constant variable
E_KEY.

UID-MOUSE—Its value is 30, the number associated with the constant variable
E_MOUSE.

UID_CURSOR—Its value is 50, the number associated with the constant variable
E_CURSOR.

MACRO_HANDLER—We assigned it the value 89, so that it would be the last
device in the list.

We need the macro handler to be the last device in the list so that its Poll() function can
review any activity that has been performed since the last call to eventManager->Get().
For example, if the user presses <F5>, the keyboard’s Poll() function will put the
character <F5> into the Event Manager’s input queue. Later, the macro device’s Poll()
function will be called. When it is, the macro handler will find the <F5> value entered
by the keyboard. If we assign the macro handler a lower number than that assigned to
the keyboard, the macro handler will always check the input queue before the keyboard
feeds its information and will never see the <F5> key (i.e., it will be passed to the main
control before the macro handler is called again).

The initial state of the macro device needs to be off so that the program doesn’t think
macro information is being fed into the input queue. The Event Manager does not look
at the state of devices, but devices generally use the information internally to determine
what types of operations to perform. The macro device can be in one of the following
two states:

D_OFF—If the macro device is in this state, no macro information is being entered
into the input queue.

Chapter 13 — Macro Device 143

D_ON—If the macro device is in this state, it is currently feeding information into
the input queue.

The Event Manager and base UI_DEVICE classes set three other variables:

e enabled is used as a second-level state indicator. The base device class sets this
variable to be TRUE, but it is ignored by the macro device.

 display is a pointer to the screen display that was created in the main program loop.
This variable is not set until the macro device is attached to the Event Manager. The
macro device does not use this pointer.

« eventManager is a pointer to the Event Manager where the macro device is attached.

The macro device uses this pointer to make queries on and feed information to the
input queue.

Member variable initialization

The class member macroTable is initialized to point to the constructor argument _macro-
Table. This variable is used as the search table for keyboard/macro expansions. The
array specified in this argument must not be destroyed until the class is destroyed by the
Event Manager.

The last thing the class constructor does is override the base class member installed. The
value specified is TRUE. This value is not used by the Event Manager, but it does
provide consistency when checking for device installation.

The class members currentMacro and offset are not set until the state of the device

changes to D_ON.

The Poll function

The MACRO_HANDLER::Poll() function was described in the conceptual operation
part of this chapter. In general, Poll() functions should be used for the following:

1—To feed information to or get information from the Event Manager’s input queue.

The keyboard and mouse devices all have poll routines that feed information into the
input queue.

144 Zinc Application Framework — Programming Techniques

2—To pass control to an object on a periodic basis. Many environments do not
support multi-tasking. In these environments the use of a poll routine is beneficial
because it ensures that all devices will be polled each time the eventManager->
Get() function is called. The cursor device uses this method to paint and remove
an XOR region to the screen, simulating a blinking cursor. It does this by keeping
track of time intervals and blinking the cursor in a consistent fashion.

The macro device feeds information to and gets information from the Event Manager.

Information is fed into the input queue when the device is “on” and checks the input
when it is “off.”

The Event function

The MACRO_HANDLER::Event() function is defined below:

class MACRO_HANDLER : public UI_DEVICE
{
public:
EVENT_TYPE Event (const UI_EVENT &event) ;

This routine must be declared by the macro device since the base UL_DEVICE class
declares it to be a pure virtual function (i.e., a function with an = 0 statement at the end).

class UI_DEVICE : public UI_ELEMENT
{
public:
virtual EVENT_TYPE Event (const UI_EVENT &event) = 0;

In general, Event() functions are used to change the state of an input device.

Enhancements

Now that we have discussed the basic design and implementation of a keyboard macro
device, let’s evaluate some variations you could implement to make the device more
powerful. (NOTE: The actual implementation of these ideas is left to the reader.)

1—Stuff the input buffer all at once, rather than one character at a time. This could
be accomplished by modifying the Poll() routine to put all macro characters into the
input queue in one step. The benefits of this method are that it simplifies the process
of the macro device and that it prevents the need for disabling all other input devices.
The problem with this implementation is two-fold. First, the macro may fill the input
buffer, in which case we will have to write code to wait until the buffer is not full.
Second, the macro may itself contain a character that is a macro key. This would

Chapter 13 — Macro Device 145

146

require modification to our member variables and may cause recursion of macro
events.

2—Modify the static variables UIW_STRING: :pasteBuffer and UIW_STRING: :paste-
Length to contain the macro, then send an L_PASTE message through the system.
This is a slick implementation whose only drawbacks are that it wipes out the old
information in the global paste buffer and that the receiving object may not be a
simple text field, like the window created in our application.

3—Extend the macro device to enable the addition or deletion of macro pairs. This
could be accomplished by overloading the + and - operators for the MACRO_-
HANDLER class.

4—Extend the macro pair to handle logical, system or normal keyboard information.
In this scenario, you would need to modify the definition of MACRO_PAIR.macro
to support UI_EVENT information rather than simple character values. In addition,
you would probably want to write an editor so that the macro could be easily edited
and modified. This would require that you set up an edit window (using the UIW_-
WINDOW class) that contained the macro key, a list of mapping events, and menu-
items or buttons that would let you add, delete or modify the contents of the list.

You should now understand the design associated with a macro device and the basic
design and implementation rules associated with input devices in general. If you are able
to understand this information, you are well on your way to understanding the operation
of the Event Manager within Zinc Application Framework and the way in which input
devices operate within the library.

Zinc Application Framework — Programming Techniques

CHAPTER 14 - HELP BAR

This tutorial shows you how to create a help bar object. When we are finished, you
should understand:

* how window objects can communicate with the help bar class

* the design used to implement an object that displays help text at the bottom of the
parent window

¢ the basic design rules that control the operation of windows and window objects
within Zinc Application Framework

* how to derive a new window object from the UI_WINDOW_OBJECT base class
e how to implement a new window object in Microsoft Windows, OS/2 and Motif.

The source code associated with this program is located in \ZINC\TUTOR\HELPBAR.
It contains the following files:

HELPBAR.CPP—This file contains the main program loop (i.e., UL_APPLICA-
TION::Main()) as well as the static functions InformationWindow(), SetHelp()
and ActionFunction().

HLPBAR.CPP—This file contains the HELP_BAR class source code.
HLPBAR.HPP—This file contains the HELP_BAR class definition.

* DEF, *. RC—These files are the environment specific definition and resource files
required when compiling for Windows or 0S/2. (NOTE: The W*.* files are for
Windows and the O*.* files are for 0S/2.)

*MAK—These files are the compiler-dependent makefiles associated with the

Helpbar program. (See “Chapter 1—Initializing the Library” for information on
compiling for each Zinc-supported platform.)

Program execution

The operation of help bar objects can be seen by compiling and running the application
HELPBAR.EXE. Two copies of the following window should appear on the screen:

Chapter 14 — Help Bar 147

First Name : || J

Last Name : li J

Address :

Phone : IT] I J

There is no direct interaction with the help bar object; it is simply used to display help
information associated with the current window object. For example, making the
“Phone” field current will cause the following text to be displayed on the help bar:

First Name : l |

Last Name : r I

Address :

Phone : I[] e J

3

When you are done experimenting with the help bar tutorial program, exit either by
selecting the “Exit” button, the “Exit” option from the system button’s menu, or by
typing <Alt+F4>.

148 Zinc Application Framework — Programming Techniques

Class definition

The help bar object is implemented with a class called HELP_BAR. The HELP_BAR
definition (contained in HELPBAR.HPP) is given below:

// Help bar objectID.
const OBJECTID ID_HELP_BAR = 3005;

class HELP_BAR : public UI_WINDOW_OBJECT
{
public:
HELP_BAR (char *text = NULL) ;
~HELP_BAR (void) ;
EVENT_TYPE Event (const UI_EVENT &event) ;

virtual void *Information (INFO_REQUEST request, void *data,
OBJECTID objectID = 0);

static UI_WINDOW_OBJECT *New(const char *, UI_STORAGE *,
UI_STORAGE_OBJECT *) ;

virtual void Store(const char *, UI_STORAGE *, UI_STORAGE_OBJECT *);

protected:
char *text;

virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode) ;
}i

This class uses one member variable:

* fext is a pointer to the text to be displayed on the help bar field.

Using HELP_BAR

The HELP_BAR class is defined to occupy the bottom line of its parent window. When
the parent window is moved or sized, the help bar will also be moved and sized so that
it still occupies the bottom line of the window. This feature is achieved by setting the
WOF_NON_FIELD_REGION flag on the help bar object. (This will be discussed later
on in this chapter.)

The help bar displays textual information when it receives a request via its Information()
function. Window objects, in this tutorial, use a user function to send help display
requests to the help bar. Each window object calls the following user function (contained
in HELPBAR.CPP):

// Help bar message indices.
enum HELP_BAR_MESSAGE
{

HELP_FIRST NAME = 1,
HELP_LAST_NAME,
HELP_ADDRESS,
HELP_PHONE,
HELP_CLOSE_WINDOW,
HELP_EXIT

}i

Chapter 14 — Help Bar 149

150

// User function to set help bar information.
EVENT_TYPE SetHelp (UI_WINDOW_OBJECT *object, UI_EVENT &,

{

}

EVENT_TYPE ccode)

// Declare the help message/context pairs.
static struct HELP_PAIR
{
UI_HELP_CONTEXT helpContext;
char *message;
} helpMessageTable[] =
{

{ HELP_FIRST_NAME, "First name of customer" }

{ HELP_LAST_NAME, "Last name of customer" },

{ HELP_ADDRESS, "Address of customer" 1},

{ HELP_PHONE, "Phone number of customer" },

{ HELP_CLOSE_WINDOW, "This will close the window" 1},
{ HELP_EXIT, "This will exit the program" },
{

0, 0 } // End of array.
}i

// If you are not setting or clearing the help bar then just exit.
if (ccode != S_CURRENT && ccode != S_NON_CURRENT)
return (0);
// Find the parent window.
for (UI_WINDOW_OBJECT *parentWindow = object; parentWindow->parent;)
parentWindow = parentWindow->parent;

// Get the help bar.
UI_WINDOW_OBJECT *helpBar =
(UI_WINDOW_OBJECT *)parentwindow~>Information(GET_STRINGID_OBJECT,
"HELP_BAR") ;

// If there was a help bar then set or clear its message.
if (helpBar)
{

// Set default message to clear bar.

char *message = "";

if (ccode == S_CURRENT)
{
// Get the message associated with the help context.
for (int i = 0; helpMessageTable[i].helpContext; i++)
if (object->helpContext == helpMessageTable[i].helpContext)
{

message = helpMessageTable[i] .message;
break;

}

// Update the help bar text.
helpBar->Information(SET_TEXT, message, ID_HELP_BAR);
¥
return (0);

The user function should perform the following essential steps:

1—Find the parent window. In order for the calling window object to obtain a
pointer to the help bar (without the use of global or special pointers), it is necessary
to get a pointer to the parent window. All windows maintain a list of their sub-
objects. Since the calling object and the help bar share the same parent window, we
can trace the objects’ parent pointer until it points at the parent window. Getting a

Zinc Application Framework — Programming Techniques

pointer to the parent window in this manner will allow access to the help bar without
the use of a global or a special help bar pointer.

2—Get the help bar. With a pointer to the parent window, we can query the window
to see if a help bar object has been added. If the window contains a help bar object
(i.e., it has the ID_HELP_BAR identification code) the window returns a UL -
WINDOW_OBJECT pointer to it.

3—Get the help information. If the parent window contained a help bar, get the help
information associated with the calling window object. In this example, the help text
is cleared when the calling window object is becoming non-current. This allows for
the help bar to remain blank if the window object that will become current does not
have any associated help information.

4—Send the display help request. Using the helpBar pointer that we set in step 2,
we can set the help bar’s text by calling its Information() function. (NOTE:
Information() is inherited from UI_WINDOW_OBIJECT.)

Event function—DOS

A DOS version of Event() is created to enable the help bar to receive the messages
which cause it to be initialized, sized or displayed when the help bar is running in DOS.
Since some of the low-level messages are environment-specific, one event function is
created for each of the supported environments. Other than this exception, the source
code for the help bar is portable across environments. All events are passed to UI_-
WINDOW_OBJECT::Event(). The following event messages are also processed by
HELP_BAR::Event():

S_CREATE—When this message is received, it is passed to U_ WINDOW_OBJECT
to initialize the object’s information. Since the help bar was declared as a non-field
region, it will (by default) occupy the entire available window space. At this time,
changes are made to the help bar’s region (i.e., member variable true) so that it only
occupies the bottom line of the window. This is demonstrated by the following code:

if (display->isText)
true.top = true.bottom;
else
{
true.left--; true.right++;
true.top = ++true.bottom - display->cellHeight + 1;
}

S_DISPLAY_ACTIVE and S_DISPLAY_INACTIVE—These messages cause the
help bar and its associated text, if any, to be displayed on the window. In text mode,

Chapter 14 — Help Bar 151

this is simple since it only requires setting the correct color palette and then
displaying text. The following code, taken from HELP_BAR::Drawltem(), shows
this:

UI_REGION region = true;
UI_PALETTE *palette = LogicalPalette(ccode, ID_BUTTON) ;
DrawText (screenID, region, text, palette, TRUE, ccode) ;

In graphics mode, displaying the help bar is a little more complicated since, in
addition to the text, there is also a graphical field to be drawn. The graphical field
is similar in appearance to a depressed button. The following code shows how the
help bar is drawn:

UI_PALETTE *palette = LogicalPalette(ccode, ID_BUTTON) ;
UI_REGION region = true;
if (FlagSet (woFlags, WOF_BORDER))

DrawBorder (screenID, region, FALSE, ccode);
display->Rectangle(screenID, region, palette, 0, TRUE, FALSE, &clip);
region.left += display->cellWidth;
region.top += HELP_OFFSET;
region.right -= display->cellWidth;
region.bottom -= (HELP_OFFSET + 1);
palette = LogicalPalette(ccode, ID_DARK_SHADOW) ;
display->Line(screenID, region.left, region.bottom - b P

region.left, region.top, palette, 1, FALSE, &clip);
display->Line(screenID, region.left, region.top,

region.right - 1, region.top, palette, 1, FALSE, &clip) ;
palette = LogicalPalette(ccode, ID_WHITE_SHADOW) ;
display->Line(screenID, region.right, region.top,
region.right, region.bottom, palette, 1, FALSE, &clip);
display->Line(screenID, region.right, region.bottom,
region.left, region.bottom, palette, 1, FALSE, &clip);
region.left += HELP_OFFSET; region.top++;
region.right -= HELP_OFFSET; region.bottom--;
palette = LogicalPalette(ccode, ID_BUTTON) ;
DrawText (screenID, region, text, palette, TRUE, ccode);
woStatus &= ~WOS_REDISPLAY;

Event function—Windows

A Windows version of Event() is created for the help bar to enable it to receive the
messages which cause it to be initialized, sized or displayed when the help bar is running
in Windows mode. Since some of the low-level messages are environment-specific, each
environment must have its own Event(). This function and the DrawlItem() function
(described below) are the only Windows specific code blocks. Otherwise, the source code
for the help bar is portable across environments. All events are passed to UL-
WINDOW_OBJECT::Event(). The following event messages are also processed by
HELP_BAR::Event():

S_INITIALIZE—This message is used to set the static pointer _helpbarJump-
Instance to the function HelpbarJumpProcedure().

152 Zinc Application Framework — Programming Techniques

S_SIZE and S_CREATE—When either of these messages is received, it is passed
to UL_WINDOW_OBIJECT to set up the object’s information. Since the help bar was
declared as a non-field region, it will (by default) occupy the entire available window
space. At this time, changes are made to the help bar’s region (i.e., member variable
true) so that it only occupies the bottom line of the window.

When objects are used within Windows, they must first be registered by a call to the
Windows’ function RegisterObject().

RegisterObject ("HELP_BAR", "STATIC", &_helpbarOffset,
&_helpbarJumpInstance, &_helpbarCallback, NULL);

The purpose of this call is to set HelpbarJumpProcedure() as the function to be called,
by Windows, when the help bar object is passed events. HelpbarJumpProcedure() gets
a pointer to the receiving object, creates a Zinc event and then passes the event to the
receiving object.

long FAR PASCAL _export HelpbarJumpProcedure (HWND hwnd, WORD wMsg,
WORD wParam, LONG lParam)
{

HELP_BAR *object = (HELP_BAR *)GetWindowLong (hWnd, _helpbarOffset) ;
return (object->Event (UI_EVENT (E_MSWINDOWS, hwWnd, wMsg, wParam,
lpParam))) ;

}

Upon return from object->Event(), the default callback function is automatically invoked
to pass the message back to the default Windows procedure (i.e., DefWindowProc).

In addition to implementing Event(), the Windows version implements a drawing routine
called Drawltem(). DrawlItem() is a virtual function that is called by the library when
drawing needs to occur. This feature is different from the other environments mainly to
illustrate an alternative way to provide drawing. Either way is valid and there are no real
speed differences. However, using Drawltem() provides a more logical division between
routines. The code for Drawltem() is listed below:

EVENT_TYPE HELP_BAR: :Drawltem(const UI_EVENT &, EVENT_TYPE ccode)
{
const int HELP_OFFSET = 1;

if (ccode == S_REDISPLAY)
InvalidateRect (screenID, NULL, FALSE);
PAINTSTRUCT ps;
HDC hDC = BeginPaint (screenID, &ps);
RECT region;
GetClientRect (screenID, ®ion);

// Fill the background.

HBRUSH fillBrush = CreateSolidBrush (RGB_LIGHTGRAY) ;
FillRect (hDC, ®ion, fillBrush);

DeleteObject (illBrush) ;

Chapter 14 — Help Bar 153

// Draw the shadow.

region.left += display->cellWidth;

region.top += HELP_OFFSET;

region.right -= display->cellWidth;

region.bottom -= (HELP_OFFSET + 1);

HPEN darkShadow = CreatePen(PS_SOLID, 1,
GetSySCOlor(COLOR_BTNSHADOW));

SelectObject (hDC, darkShadow) ;

MoveTo (hDC, region.left, region.bottom - 1);

LineTo (hDC, region.left, region.top);

LineTo (hDC, region.right, regiomn.top);

DeleteObject (darkShadow) ;

HPEN lightShadow = GetStockObject (WHITE_PEN) ;

SelectObject (hDC, lightShadow) ;

LineTo (hDC, region.right, region.bottom);

LineTo (hDC, region.left - 1, region.bottom);

DeleteObject (1lightShadow) ;

// Draw the text.

region.left += HELP_OFFSET; region.top++;

region.right -= HELP_OFFSET; region.bottom--;

SetTextColor (hDC, RGB_BLACK) ;

SetBkColor (hDC, RGB_LIGHTGRAY) ;

. :DrawText (hDC, (LPSTR)text, strlen(text), ®ion,
DT_SINGLELINE | DT_VCENTER | DT_LEFT) ;

EndPaint (screenlD, &ps);

Event function—0S/2

154

An OS/2 version of Event() is created for the help bar to enable it to receive messages
which cause it to be initialized, sized or displayed when the help bar is running under
0S/2. Since some of the low-level messages are environment-specific, each environment
must have its own Event(). This function and the Drawltem() function (described
below) are the only OS/2 specific code blocks. Otherwise, the source code for the help
bar is portable across environments. All events are passed to UI_WINDOW_OBJECT::-
Event(). The following event messages are also processed by HELP_BAR::Event():

S_CREATE and S_SIZE—When these messages are received, they are passed to
Ul WINDOW_OBIJECT to initialize the object’s information. Since the help bar was
declared as a non-field region, it will (by default) occupy the entire available window
space. At this time, changes are made to the help bar’s region (i.e., member variable
true) so that it only occupies the bottom line of the window. If the S_CREATE or
S_SIZE messages are received, the HELP_BAR object is registered with OS/2. This
is demonstrated by the following code:

case S_SIZE:
case S_CREATE:
true.top = true.bottom - display->cellHeight + 1;
woStatus |= WOS_OWNERDRAW;
font = FNT_SMALL_FONT;
RegisterObject ("UIW_HELPBAR", (char *)WC_STATIC, &baseCallback,
text) ;
break;

Zinc Application Framework — Programming Techniques

In addition to implementing Event(), the OS/2 version implements a drawing routine
called DrawlItem(). Drawltem() is a virtual function that is called by the library when
drawing needs to occur. This feature is different from the other environments mainly to
illustrate an alternative way to provide drawing. Either way is valid and there are no real
speed differences. However, using Drawltem() provides a more logical division between
routines. The code for Drawltem() is listed below:

EVENT_TYPE HELP_BAR: :DrawlItem(const UI_EVENT &, EVENT_TYPE ccode)
{

// Virtualize the display.

UI_REGION region = true;

display->VirtualGet (screenID, region);

// Fill the object region.
lastPalette = LogicalPalette(ccode, ID_WINDOW_OBJECT) ;
display->Rectangle(screenID, region, NULL, 0, TRUE);

// Draw the outer shadow.

UI_PALETTE *outline = LogicalPalette(ccode, ID_OUTLINE) ;

display->Line(screenID, region.left, region.top, region.right,
region.top, outline);

int xOffset = display->cellWidth;

int yOffset = display->cellWidth / 2;

region.left += xOffset + 1;

region.top += yOffset + 1;

region.right -= xOffset;

region.bottom -= yOffset;

// Draw the inner shadow.

UI_PALETTE *lightShadow = LogicalPalette(ccode, ID_WHITE_SHADOW) ;

UI_PALETTE *darkShadow = LogicalPalette (ccode, ID_DARK_SHADOW) ;

display->Line(screenID, region.left, region.top + 1, region.left,
region.bottom - 1, darkShadow, 1, FALSE);

display->Line(screenID, region.left, region.top, region.right,
region.top, darkShadow, 1, FALSE);

display->Line(screenID, region.right, region.top + 1, region.right,
region.bottom, lightShadow, 1, FALSE);

display->Line(screenlID, region.left, region.bottom, region.right - 1,
region.bottom, lightShadow, 1, FALSE);

--region;

region.left += xOffset;

// Draw the text.
DrawText (screenID, region, text, NULL, FALSE, ccode);

// Update the display.
display->VirtualPut (screenlID) ;
return (TRUE);

Event function—Motif

A Motif version of Event() is created for the help bar to enable it to receive messages
which cause it to be initialized, sized or displayed when the help bar is running under
Motif. Since some of the low-level messages are environment-specific, each environment
must have its own Event(). Other than this exception, the source code for the help bar
is portable to the other environments supported by Zinc. All events are passed to UI_-
WINDOW_OBJECT::Event().

Chapter 14 — Help Bar 155

Motif provides a text widget with the same appearance as the help bar object that we have
created for the other environments. Whenever native widgets can be used, it is usually
better to use them since they will be faster and provide a tighter integration with the host
environment. To illustrate this integration, the help bar for Motif will be implemented
using the Motif text widget. The following event messages are processed by HELP_-
BAR::Event():

S_SIZE and S_CREATE—When these messages are received, they are passed to
UI_WINDOW_OBIECT to initialize the object’s information. Since the help bar was
declared as a non-field region, it will (by default) occupy the entire available window
space. At this time, changes are made to the help bar’s region (i.e., member variable
true) so that it only occupies the bottom line of the window. Then the help bar is
registered with Motif. This is demonstrated by the following code (contained in
HELPBAR.CPP):

case S_SIZE:
case S_CREATE:
true.top = true.bottom - display->cellHeight + 1;
XtSetArg (args[nargs], XmNeditable, FALSE); nargs++;
XtSetArg (args[nargs], XmNcursorPositionVisible, FALSE); nargs++;
XtSetArg (args[nargs], XmNmarginHeight, 2); nargs++;
XtSetArg (args[nargs], XmNmarginWidth, 2); nargs++;
XtSetArg(args[nargs], XmNvalue, text); nargs++;
RegisterObject (NULL, XmCreateText, text, ccode, TRUE);
break;

S_REDISPLAY—This message causes the help bar to be re-displayed on the screen.
The following code (contained in HLPBAR.CPP) shows how this is done:

case S_REDISPLAY:
nargs = 0;
XtSetArg(args[nargs], XmNvalue, text); nargs++;
XtSetValues (screenID, args, nargs);
break;

Enhancements

156

There are several enhancements that can be made to HELP_BAR to provide a different
look or implementation. Some of these ideas are described below. (NOTE: The actual
implementation of these ideas is left to the reader.)

1—Store the help context information into a .DAT file. Using a .DAT file would
require the use of the UL_STORAGE and UI_STORAGE_OBJECT classes.

2—In addition to the field specific help, general help could be provided. This way,
whenever a field does not have its own help context, the help bar will not be blank.

Zinc Application Framework — Programming Techniques

3—Bitmaps could be added to the HELP_BAR class to be displayed in addition to
the text information.

4—In this tutorial, the help bar consists of a single line of text information.
HELP_BAR could be modified to allow for multiple fields on the same help bar line.
Some of these extra fields could be buttons that invoke a hyper-text help window.

Chapter 14 — Help Bar 157

158 Zinc Application Framework — Programming Techniques

CHAPTER 15 - VIRTUAL LIST

This tutorial shows you how to create a virtual list that presents database information to
the screen (i.e., a list that gets its information from disk). When we are finished, you
should understand:

e the design used to implement a virtual list

* the basic design rules that control the operation of windows and of window objects
within Zinc Application Framework

* the type of information needed to initialize the UITW_WINDOW base classes.

The source code associated with this program is located in \ZINC\TUTOR\VLIST. It
contains the following files:

VLIST.CPP—This file contains the main program loop (i.e., UL APPLICATION::-
Main()) as well as the following member functions:

VIRTUAL_ELEMENT::VIRTUAL_ELEMENT()
VIRTUAL_ELEMENT::Event()
VIRTUAL_LIST::VIRTUAL_LIST()
VIRTUAL_LIST::"VIRTUAL_LIST()
VIRTUAL_LIST::Event()
VIRTUAL_LIST::LoadRecord()

VLIST.TXT—This file contains 100 records that are dynamically read from disk
when needed by the virtual list.

VLIST.HPP—This file contains the virtual list and the element class definitions.
*.DEF, *.RC—These files are the environment specific definition and resource files
required when compiling for Windows or 0S/2. (NOTE: The W*.* files are for
Windows and the O*.* files are for 0S/2.)

*.MAK—These files are the compiler-dependent makefiles associated with the Vlist

program. (See “Chapter 1—Initializing the Library” for information on compiling
for each Zinc-supported platform.)

Chapter 15 — Virtual List 159

Program execution

The operation of this program can be examined by compiling and running the application

VLIST.EXE.

The following window should appear when you run the program:

d-
Bell - Hollow object which rings.

Betray - Reveal wanted information; deceive.
Bilious - Bad-tempered:; relating to bile.

Bind - Tie together: unite; wrap; obligate.
Biometry - Measurement of life span.

Birdseye - Seen from above or afar type.

Bobtail - Short tail; animal with short tail.

Botulism - Type of food poisoning.

Benelit - Help received. charity entertainment.

Black - Dpposite of white; absence of color or light.
Bleak - Exposed to the elements. unsheltered and barren.

Block - Solid mass; platform; mold: obstacle; city square.

The virtual list is actually the entire window itself. Each line of the list contains
information about a different record in the database, where each record is comprised of

a word and an associated definition.

You should be able to use the following keys to move within the window:

Action Key
First element <Ctrl+Home>
Last element <Ctrl+End>
Previous element <Shift+Tab>
<T>
<Gray+T>
Next element <Tab>
<!>
<Gray >

160

Description
Moves to the first database element.

Moves to the last database element.

Moves to the previous database element. If
the highlight is positioned on the first element
of the window, the previous element is
retrieved from the database.

Moves to the next database element. If the
highlight is positioned on the last element
of the window, the next element is retrieved
from the database.

Zinc Application Framework — Programming Techniques

Page-up <PgUp> Moves up one page in the database.
<Gray PgUp>

Page-down <PgDn> Moves down one page in the database.
<Gray PgDn>

In addition, the left mouse button can be used to select an object.

When you are finished experimenting with the program, exit by either selecting “Close”
from the system button’s pop-up menu, or by pressing <Alt+F4>.

Class definitions

The virtual list window is implemented with two classes: VIRTUAL_LIST and
VIRTUAL_ELEMENT. The virtual list class controls the presentation of individual
virtual elements that are placed in the list. The virtual element objects represent a single
database record. They are automatically created and destroyed as needed by the virtual
list class. The following code shows how the VIRTUAL_LIST class is added to a parent
window, then attached to the Window Manager using the + operator:

// Create the virtual list then attach it to the window manager.
*windowManager
+ & (*UIW_WINDOW: :Generic (5, 2, 75, 12, "Dictionary")
+ new VIRTUAL_LIST("vlist.txt", 80));

The definition for the VIRTUAL_ELEMENT class is given below:

class VIRTUAL_ELEMENT : public UIW_STRING

friend class VIRTUAL_LIST;
public:
int recordNumber;

void DataSet (VIRTUAL_ELEMENT *element)

{ UIW_STRING: :DataSet (element->DataGet ());

recordNumber = element->recordNumber; }

void DataSet (int _recordNumber, char *string)

{ UIW_STRING::DataSet (string); recordNumber = _recordNumber; }
virtual EVENT_TYPE Event (const UI_EVENT &event) ;
VIRTUAL_ELEMENT *Next (void) { return (VIRTUAL_ELEMENT *)next; }
VIRTUAL_ELEMENT *Previous(void) { return (VIRTUAL_ELEMENT *)previous; }

private:
int height;

VIRTUAL_ELEMENT (int left, int top, int width, int _height, int length)
UIW_STRING (left, top, width, "", length, STF_NO_FLAGS,
WOF_NO_FLAGS), height (_height) {}
}i

This class uses the following member variables. (Its member functions and conceptual
operation will be discussed later in this chapter.)

Chapter 15 — Virtual List 161

162

e recordNumber is the number of the record in the database. Record numbers start
from the number 0 and increment to one less than the total number of records in the
database. For example, if the database has “n” records (e.g., 100), recordNumber
for the last database record would be “n-1” (e.g., 99).

s height is the height of the VIRTUAL_ELEMENT object. height is used to position
the object within the window.

The VIRTUAL_LIST class definition is:

class VIRTUAL_LIST : public UIW_WINDOW

{

public:
VIRTUAL_LIST (const char *fileName, int _recordLength) ;
~VIRTUAL_LIST (void) ;

virtual EVENT_TYPE Event (const UI_EVENT &event);

VIRTUAL_ELEMENT *Current (void) { return (VIRTUAL_ELEMENT *)current; }
VIRTUAL_ELEMENT *First (void) { return (VIRTUAL_ELEMENT *)first; }
VIRTUAL_ELEMENT *Last (void) { return (VIRTUAL_ELEMENT *)last; }

void LoadRecord (VIRTUAL_ELEMENT *element, int recordNumber);

private:
FILE *file;
const int recordLength;
int numberOfRecords;
int topRecordsShowing;
int numberShowing;

}i

This class uses the following member variables:

o file is a pointer to the database. This pointer is set when the virtual list class is
created.

recordLength is the total number of bytes each record occupies in the database. The
database we have implemented is a simple flat file with 80 character fixed-length
records.

o numberOfRecords is the total number of records in the database.

o topRecordShowing is the number of the record currently displayed as the first item
in the virtual list.

e numberShowing is the number of records that are currently visible in the list.

Zinc Application Framework — Programming Techniques

Conceptual operation

The conceptual operation of the virtual list can be illustrated by the following figure:

DATABASE
record 1
WINDOW
Dictionary []
record 1
record 2
record N
record N

This operation can be described through the following steps:

1—The virtual list is derived from the UIW_WINDOW base class and reserves the
space within its border for the list elements. When the virtual list is created, the
database is opened and the total number of records is recorded.

VIRTUAL_LIST::VIRTUAL_LIST (const char *fileName, int _recordLength)
UIW_WINDOW(O, 0, 0, O, WOF_NON_FIELD_REGION) ,

recordLength (_recordLength), topRecordShowing (0) , numberShowing (0)
// Open the database, get the total number of records.

file = fopen(fileName, "rb");

fseek(file, 0L, SEEK_END);

numberOfRecords = (int) (ftell(file) / recordLength) ;
}

2—The list creates virtual elements to fill its window space. When the list is created,
it automatically determines the number of elements required to fill the screen, then
constructs each element. The information associated with each element is read from
disk using the LoadRecord() function. This function is responsible for setting the
UIW_STRING: :text variable associated with the element. The code responsible for
this initialization is shown below:

void VIRTUAL_LIST: :LoadRecord (VIRTUAL_ELEMENT *element,
int recordNumber)
{

// Load the record from the file.

if (recordNumber > numberOfRecords - 1)
element->DataSet (-1, "");

else

Chapter 15 — Virtual List 163

long offset = recordLength * recordNumber;
fseek (file, offset, SEEK_SET);

char *text = element-s>DataGet();
fgets(text, recordLength - 1, file);
text [recordLength - 1] = ‘\0‘;

element->DataSet (recordNumber, text);

}

EVENT _TYPE VIRTUAL_LIST::Event (const UI_EVENT &event)

{
EVENT_TYPE ccode = LogicalEvent (event, ID_WINDOW) ;

switch (ccode)
{

case S_CREATE:
case S_SIZE:

{
ccode = UIW_WINDOW::Event (event) ;

// Calculate the number of elements that will fit in the list.
int lineHeight = display->TextHeight ("Mxq", screenID, font)
+ display->preSpace + display->postSpace;

int newNumberShowing = (region.bottom - region.top +
display->preSpace + display->postSpace);
newNumberShowing /= lineHeight;
if (display->isText)
newNumberShowing++;

// Make sure that the window is full of records.
if (numberShowing != newNumberShowing)
{
numberShowing = newNumberShowing;
Destroy () ;
int right = region.right - region.left + 1;
for (int line = 0; line < numberShowing; line++)
{

VIRTUAL_ELEMENT *element = new VIRTUAL_ELEMENT (O,
line * lineHeight, right, lineHeight,
recordLength + 10);

element->woStatus |= WOS_GRAPHICS;

LoadRecord(element, topRecordShowing + line);

Add(element) ;

}

Event (UI_EVENT (S_REDISPLAY)) ;
}
}

break;

}

NOTE: Only those elements that are visible within the window are stored in
memory. All other element information is retained on disk.

3—1If the user moves to virtual list elements that are visible on the screen, the event

is passed by the VIRTUAL_LIST::Event() function to the base UIW_WINDOW::-
Event() function for processing.

164 Zinc Application Framework — Programming Techniques

If the user moves to a record that is not present on the screen, the virtual list
“scrolls” all visible record information on the screen (up or down, depending on the
new position selected) and reads the new record. The new record is then displayed
to the screen. For example, if the first eight records of the database were visible on
the screen and the user were positioned on the eighth element and pressed the down
arrow key, the list would scroll elements 2 through 8 up one cell position, then
display the ninth element on the screen. The information associated with the first
element would be replaced when the information was scrolled. The picture below
shows conceptually how movement works. (The element numbers in the picture are
representative of the database records.)

element 1 element 2
element 2 element 3
element 3 element 4
element 4 <DOWN> element 5
element 5 —p element 6
element 6 element 7
element 7 element 8
element 8 element 9

4—The virtual list information is deleted when the class is deleted. This operation
is performed when the window is “closed,” or when the application is terminated.

VIRTUAL_ELEMENT

The VIRTUAL_ELEMENT class is derived from the base UIW_STRING class so that
it can effectively present information within a window. The VIRTUAL_ELEMENT
constructor is defined as private and is an in-line function. (Only the VIRTUAL_LIST
class has access to the constructor by virtue of it’s friend class status.)

class VIRTUAL_ELEMENT : public UIW_STRING
{
friend class VIRTUAL_LIST;
private:
VIRTUAL_ELEMENT (int left, int top, int width, int height)
UIW_STRING (left, top, width, "", length, STF_NO_FLAGS,
WOF_NO_FLAGS), height (_height) {}

}

The class constructor initializes information as follows:

Chapter 15 — Virtual List 165

o left, top, width, height and length give the size of the object in text or pixel
coordinates. Earlier we presented the virtual list code (VIRTUAL_LIST::Event())
that creates virtual elements.

// Calculate the number of elements that will fit in the list.
int lineHeight = display->Textheight ("Mxg", screenID, font)
+ display->preSpace + display->postSpace;

int newNumberShowing = (region.bottom - region.top + display->preSpace +
display->postSpace) ;

newNumberShowing /= lineHeight;

if (display->isText)
newNumberShowing++;

if (numberShowing != newNumberShowing)
{
numberShowing = newNumberShowing;
Destroy () ;
int right = region.right - region.left + 1;
for (int line = 0; line < numberShowing; line++)
{
VIRTUAL_ELEMENT *element = new VIRTUAL_ELEMENT (0,
line * lineHeight, right, lineHeight, recordLength + 10);
element->woStatus |= WOS_GRAPHICS;
LoadRecord(element, topRecordShowing + line);
Add(element) ;
}
Event (UI_EVENT (S_REDISPLAY)) ;

The actual initialization of the VIRTUAL_ELEMENT’s region is handled by the base
class UIW_STRING.

The two overloaded DataSet() functions are used by VIRTUAL_LIST to set the
information contained within the list. The first overloaded function takes another
VIRTUAL_ELEMENT pointer argument. This overloaded function is used when the
elements in the list are being scrolled. The second overloaded function receives the
record number and a character string as arguments. This function is used by the virtual
list when the elements are being read in from disk. Both of these functions are in-line,
and both are presented below:

void DataSet (VIRTUAL_ELEMENT *element)
{ UIW_STRING: :DataSet (element->DataGet());
recordNumber = element->recordNumber; }
void DataSet (int _recordNumber, char *string)
{ UIW_STRING::DataSet (string); recordNumber = _recordNumber; }

166 Zinc Application Framework — Programming Techniques

VIRTUAL_LIST

The virtual list class is derived from the base class U'W_WINDOW. This derivation
allows the list to inherit many of the field movement features implemented by the base
class (e.g., moving up and down within the window).

The virtual list constructor initializes the database and base class information. Its
definition is shown below:

VIRTUAL_LIST::VIRTUAL_LIST (const char *fileName, int _recordLength)
UIW_WINDOW(O, 0, 0, O, WOF_NON_FIELD_REGION),
recordLength (_recordLength) , topRecordShowing (0), numberShowing (0)

// Open the database, get the total number of records.
file = fopen(fileName, "rb");

fseek (file, 0L, SEEK_END) ;

numberOfRecords = (int) (ftell (file) / recordLength) ;

Base class initialization

The base UIW_WINDOW class constructor is called before any class specific information
is set. It requires the specification of object boundaries (the first four arguments) and the
specification of any special window object flags.

In addition to the boundary information, the base UIW_WINDOW object and window
manager classes set several other variables:

* the UL_WINDOW_OBJECT part of the class is initialized with the information passed
by the UIW_WINDOW class. This includes the boundary arguments specified by our
constructor as well as the default arguments specified by the UIW_WINDOW
constructor. These arguments are shown below:

class EXPORT UIW_WINDOW : public UI_WINDOW_OBJECT, public UI_LIST

{

public:

UIW_WINDOW (int left, int top, int width, int height,

WOF_FLAGS woFlags = WOF_NO_FLAGS,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS,
UI_HELP_CONTEXT helpContext NO_HELP_CONTEXT,
UI_WINDOW_OBJECT *minObject NULL) ;

I

}i

UIW_WINDOW(int left, int top, int width, int height,
WOF_FLAGS woFlags, WOAF_FLAGS woAdvancedFlags,
UI_HELP_CONTEXT helpContext, UI_WINDOW_OBJECT *minObject)
UI_WINDOW_OBJECT(left, top, width, height, _woFlags,
_woAdvancedFlags), UI_LIST(), support(), clipList(),
wnFlags (WNF_NO_FLAGS)

Chapter 15 — Virtual List 167

Member initialization

The remaining part of the constructor initializes the specific member information
associated with the VIRTUAL_LIST class:

 file is set to point to the file opened using the fopen() function call. This file is
opened for read only access.

recordLength is set to the argument passed down by the constructor. In our example,
the record length is 80 bytes.

s numberOfRecords is set to the number of fixed-length records stored in the file. This
value is achieved by dividing the file length (in bytes) by the size (in bytes) of an
individual record.

e topRecordShowing is set to 0, since we will begin reading from the front of the file.

o numberShowing is set to 0, since no records are currently visible.

The Event function

Various parts of the VIRTUAL_LIST::Event() function were described in previous parts
of this chapter. The most important thing to understand about this function is that it only
overrides events that cause the presentation of information to change. All other events
are passed to UIW_WINDOW for handling. The following list describes how information
is overridden by the VIRTUAL_LIST::Event() function:

S_CREATE and S_SIZE cause the virtual list to recompute the number of virtual
elements that can be presented to the screen. These elements are then retrieved from
disk. The message is passed to the UIW_WINDOW::Event() member function for
processing. This causes the list elements to be displayed to the screen.

L_DOWN and L_NEXT are not overridden unless the next element in the virtual list

resides on disk. If the element is not present on the screen, the current element
information is scrolled up in the window and the next element is retrieved from disk.

168 Zinc Application Framework — Programming Techniques

L_UP and L_PREVIOUS are not overridden unless the previous element in the
virtual list resides on disk. If the element is not present on the screen, the current
element information is scrolled down in the window and the previous element is
retrieved from disk.

L_PGUP, L_PGDN, L_TOP and L_BOTTOM cause all of the current elements to
be replaced by new elements from the disk.

The Load function

The VIRTUAL_LIST load functions allow us to read information from various parts of
the database. The VIRTUAL_LIST::LoadRecord() function is the only function that
actually performs read operations from disk. The parameter, recordNumber, is used to
determine which record is to be retrieved.

Enhancements

The information presented in this chapter should help you understand the operation of the
UIW_WINDOW class and the implementation of a virtual list that uses many of the
features of its base class but optimizes the presentation of large amounts of data. There
are many variations and enhancements that could be made to the virtual list and element
classes described above. Let’s look at some variations you could implement to make the
virtual list more powerful and flexible. (NOTE: The actual implementation of these ideas
is left to the reader.)

1—Make the base class abstract by declaring pure virtual functions for the
LoadRecord() function. Doing this would allow you to read non-ascii text into the
record and to display the record information in various formats.

2—Allow a buffer of records before and after the list elements presented to the
screen, so that you don’t need to read record information every time the bottom or
top of the window is reached.

3—Scroll bars could be added to the vertical list to aid in scrolling and to show
position within the list.

If you are able to envision the extensions and variations presented above, you are well on

your way to understanding the operation of windows and window objects within Zinc
Application Framework.

Chapter 15 — Virtual List 169

170 | Zinc Application Framework — Programming Techniques

CHAPTER 16 - CUSTOMIZED DISPLAYS

This tutorial discusses the design features you should be aware of when deriving your
own display classes. We will use the UI_BGI_DISPLAY library class as our example.
As a result, some DOS graphics features will be presented. When you are finished with
this tutorial you should understand:

 the details required to implement the Borland BGI display

* the basic design rules that control the operation of display classes used within Zinc
Application Framework

» the type of information needed to initialize the base UI_DISPLAY class.

The source code associated with this program is located in \ZINC\TUTOR\DISPLAY.
It contains the following files:

TEST.CPP—This file contains a graphics test program.

BORLAND.MAK—This is the makefile associated with the display program. You
can compile TEST.EXE, by typing make -fborland.mak test.exe at the
command line prompt.

In addition, the D_BGIDSP.CPP file, located in \ZINC\SOURCE, is used.

D_BGIDSP.CPP—This file contains the BGI class constructor, destructor and
associated display member functions.

NOTE: The UI_BGI_DISPLAY class requires GRAPHICS.LIB and the associated BGI
files (e.g., EGAVGA.BGI, CGA.BGI or HERC.BGI). These files are all provided with
the Borland compiler. However, Zinc also provides the .BGI files in \ZINC\BIN. If you
do not have the Borland compiler, it is still recommended that you read this tutorial so
that you understand the theory and implementation details of Zinc Application Framework
display classes.

Conceptual design

The main purpose of setting up a display class object is to control all presentation made
to the screen. An additional benefit of a display class is that it allows the abstraction of
screen painting. For example, if we want to draw a rectangular box, all we need to do
with Zinc Application Framework is to call display->Rectangle(). Since the variable

Chapter 16 — Customized Displays 171

display is a pointer to the abstract U_DISPLAY class, the actual details of drawing a
rectangle are left to the device dependent Rectangle() function. Since all display classes
are derived from the base UI_DISPLAY class, it is not necessary to know which device
dependent display class (UI_BGI_DISPLAY, UI_FG_DISPLAY, UI_GRAPHICS_-
DISPLAY, UIl_MOTIF_DISPLAY, UI_MSC_DISPLAY, UI_MSWINDOWS_DISPLAY,
UI_0S2_DISPLAY, UI_TEXT_DISPLAY, etc.) was actually created.

There are three key aspects to the implementation of display classes. The first is the
definition of the UL_DISPLAY base class. This class defines the general operation of all
displays but leaves the implementation to derived display classes. For example, the
function responsible for drawing a rectangle is declared virtual by the base UI_DISPLAY
class:

class EXPORT UI_DISPLAY
{
public:
virtual void Rectangle (SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;

The UI_DISPLAY function above is merely a stub. Thus, each derived display class is
required to have an implementation for the Rectangle() function (if it is to be supported).

The second aspect to the implementation of display classes is the dynamic coordinate
system that can change at run-time depending on whether the program is running in
various text or graphics modes. The coordinate system is left-top zero based (i.e., 0,0 is
the coordinate of the left-top corner of the screen) where the right-bottom coordinates are
determined by the type of display and the mode in which it is running. Some example
display mode/coordinates are shown below.

Display mode Right Bottom
Text 80 column x 25 line 79 24
Text 40 column x 25 line 39 24
Text 80 column x 43 line 79 42
Text 80 column x 50 line 79 49
CGA 320 column x 200 line 319 199
MCGA 320 column x 200 line 319 199
EGA 640 column x 350 line 639 349
VGA 640 column x 480 line 639 479

Last, each display class maintains screen information by assigning unique identifications
to rectangular regions of the screen. These rectangular regions are used for clipping and
updating the display. For example, if the following two windows were attached to the
screen, the display would contain several rectangular regions with different identifications:

172 Zinc Application Framework — Programming Techniques

Thig is window #1.

0
”””””””” o0 1 2| 0
iy SR 24, 13
,,, -

NOTE: On environments where drawing routines are managed by the operating system
(e.g., Windows, OS/2, Motif), the clipping is handled by the operating system.

Class implementation

The declaration for the BGI display class is defined in UI_DSP.HPP. Its declaration is
almost identical to all of the other types of derived displays supported by Zinc Application
Framework, with the exception of the constructor and destructor names:

class EXPORT UI_BGI_DISPLAY : public UI_DISPLAY, public UI_REGION_LIST
{
public:

struct BGIFONT

int font;

int charSize;
int multx, divX;

Chapter 16 — Customized Displays 173

174

int multyY, divy;
int maxWidth, maxHeight;

}i
typedef char BGIPATTERN[8];

static UI_PATH *searchPath;
static BGIFONT fontTable [MAX_LOGICAL_FONTS] ;
static BGIPATTERN patternTable[MAX_LOGICAL_PATTERNS];

UI_BGI_DISPLAY (int driver = 0, int mode = 0);
virtual ~UI_BGI_DISPLAY (void);
virtual void Bitmap (SCREENID screenID, int column, int line,
int bitmapWidth, int bitmapHeight, const UCHAR *bitmapArray,
const UI_PALETTE *palette = NULL,
const UI_REGION *clipRegion = NULL, HBITMAP *colorBitmap = NULL,
HBITMAP *monoBitmap = NULL) ;
virtual void BitmapArrayToHandle (SCREENID screenlD, int bitmapWidth,
int bitmapHeight, const UCHAR *bitmapArray,
const UI_PALETTE *palette, HBITMAP *colorBitmap,
HBITMAP *monoBitmap) ;
virtual void BitmapHandleToArray (SCREENID screenID, HBITMAP colorBitmap,
HBITMAP monoBitmap, int *bitmapWidth, int *bitmapHeight,
UCHAR **bitmapArray) ;
virtual void Ellipse (SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;
virtual void IconArrayToHandle (SCREENID screenID, int iconWidth,
int iconHeight, const UCHAR *iconArray, const UI_PALETTE *palette,
HICON *icon) ;
virtual void IconHandleToArray (SCREENID screenID, HICON icon,
int *iconWidth, int *iconHeight, UCHAR **iconArray);
virtual void Line (SCREENID screenID, int columnl, int linel,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int xor = FALSE, const UI_REGION *clipRegion = NULL);
virtual COLOR MapColor (const UI_PALETTE *palette, int isForeground) ;
virtual void Polygon (SCREENID screenID, int numPoints,
const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;
virtual void Rectangle (SCREENID screenID, int left, int top, int right,
int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;
virtual void RectangleXORDiff (const UI_REGION &oldRegion,
const UI_REGION &newRegion) ;
virtual void RegionDefine (SCREENID screenID, int left, int top,
int right, int bottom);
virtual void RegionMove (const UI_REGION &oldRegion, int newColumn,
int newLine, SCREENID oldScreenID = ID_SCREEN,
SCREENID newScreenID = ID_SCREEN) ;
virtual void Text (SCREENID screenID, int left, int top,
const char *text, const UI_PALETTE *palette, int length = -1,
int fill = TRUE, int xor = FALSE,
const UI_REGION *clipRegion = NULL,
LOGICAL_FONT font = FNT_DIALOG_FONT) ;
virtual int TextHeight (const char *string,
SCREENID screenID = ID_SCREEN, LOGICAL_FONT font = FNT_DIALOG_FONT) ;
virtual int TextWidth (const char *string, SCREENID screenID = ID_SCREEN,
LOGICAL_FONT font = FNT_DIALOG_FONT) ;
virtual int VirtualGet (SCREENID screenID, int left, int top, int right,
int bottom) ;
virtual int VirtualPut (SCREENID screenlID) ;

// ADVANCED functions for mouse and cursor --- DO NOT USE! ---

virtual void DeviceMove (IMAGE_TYPE imageType, int newColumn,
int newLine);

Zinc Application Framework — Programming Techniques

virtual void DeviceSet (IMAGE_TYPE imageType, int column, int line,
int width, int height, UCHAR *image) ;

protected:
int maxColors;
char _virtualCount;
UI_REGION _virtualRegion;
char _stopDevice;

void SetFont (LOGICAL_FONT logicalFont) ;
void SetPattern(const UI_PALETTE *palette, int xor);
}i

NOTE: You may have noticed that almost all the member functions are defined with the
reserved word yirtual. Zinc Application Framework uses virtual so that you can derive
classes from any of the supported library classes. If you derive a display class, the use
of virtual is not necessary. (See your compiler manual for more information about the
use of virtual.)

#include files

Whenever you derive a display class, you need to include the proper header files
associated with the display that give you access to their functions. The Borland graphics
package requires the use of the header file GRAPHICS.H before the definition of the
member functions. (NOTE: GRAPHICS.H is only included in the BGIDSP.CPP file,
Zinc programs do not need to include this file.)

#include <graphics.h>

Display Construction

The abstract base UI_DISPLAY class constructor (called by the UI_BGI_DISPLAY
constructor) requires one argument:

UI_DISPLAY (int isText);

The argument, isText, tells whether a text or graphics display has been created. Since we
are implementing a graphics display, this value should be FALSE. This value is used by
the base display to set the UI_DISPLAY: :isText variable.

Additionally, the UI_DISPLAY class provides default settings for the following members:
* installed is a flag that tells whether the display has been installed. By default, this
member is set to FALSE by the base UI_DISPLAY class. The derived display

constructor should set this variable to be TRUE if the graphics display installs
correctly.

Chapter 16 — Customized Displays 175

176

isText indicates whether the display is running in text or graphics mode. If is7ext is
TRUE, the application is running in text mode. Otherwise, the application is running
in graphics mode. This variable is set by passing either TRUE or FALSE to the base
class.

isMono is a flag that tells whether the display is operating in monochrome mode.

cellWidth and cellHeight are width and height values of a cell coordinate. If the
application is running in text mode, cellWidth and cellHeight are 1. Otherwise, the
value of cellWidth and cellHeight is determined by the graphics mode and default
font size. For example, the UI_BGI_DISPLAY class constructor sets cellWidth to
7 and cellHeight to 23.

columns and lines tell how many physical columns or lines are on the display. The
following table shows the values for the BGI implementation for columns and lines:

Display mode columns lines
Text 80 column x 25 line 80 25
Text 40 column x 25 line 40 25
Text 80 column x 43 line 80 43
Text 80 column x 50 line 80 50
CGA 320 column x 200 line 320 200
MCGA 320 column x 200 line 320 200
EGA 640 column x 350 line 640 350
VGA 640 column x 480 line 640 480

preSpace denotes the size (in pixels) of the white space between the top border of a
string field and the tallest character. By default, preSpace is set to 2.

postSpace denotes the size (in pixels) of the white space between the bottom border
of a string field and the lowest character. By default, postSpace is set to 2.

miniNumeratorX and miniDenominatorX are values used to determine the width of
a mini-cell. miniNumeratorX is set to 1 and miniDenominatorX is set to 10. (These
values default to 1/10th of a cellwidth.) Mini-cells provide for more precise
positioning of objects and are available in graphics modes only.

miniNumeratorY and miniDenominatorY are values used to determine the height of
a mini-cell. miniNumeratorY is set to 1 and miniDenominatorY is set to 10. (These
values default to 1/10th of a cellheight.) Mini-cells provide for more precise
positioning of objects and are available in graphics modes only.

Zinc Application Framework — Programming Techniques

* backgroundPalette is a pointer to the background color palette. This static pointer
is initialized to point to the UI_PALETTE structure, __backgroundPalette, contained
in G_DSP.CPP.

* xorPalette is a pointer to the XOR color palette. This static pointer is initialized to
point to the UI_PALETTE structure, __xorPalette, contained in G_DSP.CPP.

* colorMap is a pointer to the normal color palette. This static pointer is initialized to
point to the UI_PALETTE structure, __colorMap, contained in G_DSP.CPP.

After the base class initialization is complete, we must initialize any display-specific
information. A listing of the UI_BGI_DISPLAY constructor is shown below. (NOTE:
The step identifiers to the right are not part of the actual code.)

UI_BGI_DISPLAY::UI_BGI_DISPLAY (int driver, int mode)
UI_DISPLAY (FALSE)
{

// Register the system, dialog and small fonts that were linked in.
BGIFONT BGIFont = {0, O, 1, 1, 1, 1, 0, 0 }; (Step 1)
BGIFont.font = registerfarbgifont (SmallFont) ;
if (BGIFont.font >= 0)
{
BGIFont.charSize = 0;
BGIFont .maxWidth = 10;
BGIFont .maxHeight = 11;
UI_BGI_DISPLAY::fontTable [FNT_SMALL_FONT] = BGIFont;
}
BGIFont.font = registerfarbgifont (DialogFont) ;
if (BGIFont.font >= 0)
{
BGIFont.charSize = 0;
BGIFont .maxWidth = 11;
BGIFont .maxHeight = 11;
UI_BGI_DISPLAY::fontTable[FNT_DIALOG_FONT] = BGIFont;
}
BGIFont.font = registerfarbgifont (SystemFont) ;
if (BGIFont.font >= 0)
{

BGIFont.charSize = 0;

BGIFont .maxWidth = 11;

BGIFont .maxHeight = 13;

UI_BGI_DISPLAY::fontTable[FNT_SYSTEM_FONT] = BGIFont;
}
// Find the type of display and initialize the driver. (Step 2)
if (driver == DETECT)

detectgraph (&driver, &mode);
int tDriver, tMode;

// Use temporary path if not installed in main().
int pathInstalled = searchPath ? TRUE : FALSE; (Step 3)
if (!pathInstalled)
searchPath = new UI_PATH;
const char *pathName = searchPath->FirstPathName () ;

Chapter 16 — Customized Displays 177

178

tDriver = driver;

tMode = mode;

initgraph (&tDriver, &tMode, pathName) ;
pathName = searchPath->NextPathName () ;

} while (tDriver == -3 && pathName) ;
if (tDriver < 0)
return;

driver = tDriver;
mode = tMode;

// Delete path if it was installed temporarily.
if (!pathInstalled)

delete searchPath;
searchPath = NULL;
}

columns = getmaxx() + 1; (Step 4)
lines = getmaxy () + 1;
maxColors = getmaxcolor() + 1;

// Fill the screen according to the specified palette. (Step 5)

SetFont (FNT_DIALOG_FONT) ;

cellwidth = (fontTable[FNT_DIALOG_FONT].font == DEFAULT_FONT) °?
TextWidth("M", ID_SCREEN, FNT_DIALOG_FONT) : // Bitmap font.
TextWidth("M", ID_SCREEN, FNT_DIALOG_FONT) - 2; // Stroked font.

cellHeight = TextHeight (NULL, ID_SCREEN, FNT_DIALOG_FONT) +
preSpace + postSpace + 4 + 4; // 4 above and 4 below the text.

SetPattern(backgroundPalette, FALSE) ;

setviewport (0, 0, columns - 1, lines - 1, TRUE);

bar(0, 0, columns - 1, lines - 1);

// Define the screen display region.
Add (NULL, new UI_REGION_ELEMENT (ID_SCREEN, 0, 0, columns - 1,
lines - 1));
installed = TRUE;
}

The main steps in this initialization are:

1—The first step is to register any fonts that will be linked into the program (e.g., we
defined the system, dialog and small fonts). These fonts are contained in the .CHR
files in \ZINC\SOURCE. The fonts can be modified with the Borland font editor
and must be compiled with the Borland utility BGI20OBJ.EXE. Once in .OB] files,
the fonts can be linked into the user application. (NOTE: These fonts are
automatically linked into DOS_BGI.LIB.)

2—The second step determines what type of display can be created. In the Borland
graphics library this is done by calling detectgraph(). The driver and mode
arguments of the constructor allow the programmer to override this default detection.

3—The third step required to set up the Borland graphics package is to find the
associated graphics driver. The current working directory is the first place to be
searched, the second is the originating directory of the application, and finally the
UI_PATH class object is used to search the directories specified by the environment

Zinc Application Framework — Programming Techniques

variable “PATH.” If the driver cannot be found, initialization ends, with the
installed flag remaining FALSE. Otherwise, the graphics display is initialized and
the process continues to the third step.

4—This step sets up columns, lines and maxColors variables. A description of these
variables was discussed previously in this chapter.

5—The final step requires us to set up the default font, initialize cellWidth and

cellHeight fill the background screen, and define the new display region (i.e., entire
screen). Since the display was installed, installed is set to TRUE.

Display Destructor

The class destructor for UI_BGI_DISPLAY is straight-forward. If the display was
installed, it must be un-installed by calling closegraph(), which restores the screen.

UI_BGI_DISPLAY:: UI_BGI_DISPLAY (void)
{
// Restore the display.

if (installed)
closegraph() ;

Paint Member Functions

All painting functions work under a set of similar principles. To illustrate these principles
we will examine the UI_BGI_DISPLAY::Rectangle() function. (NOTE: The step
identifications to the right are not part of the actual code.)

void UI_BGI_DISPLAY::Rectangle (SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width, int f1ll;
int xor, const UI_REGION *clipRegion)

// Assign the rectangle to the region structure. (step 1)

UI_REGION region, tRegion;

if (!RegionInitialize(region, clipRegion, left, top, right, bottom))
return;

// Draw the rectangle on the display.
int changedScreen = FALSE;

for (UI_REGION_ELEMENT *dRegion = First(); dRegion; (step 2)
dRegion = dRegion->Next ())
if (screenID == ID_DIRECT |
(screenID == dRegion->screenlID &&

dRegion->region.Overlap (region, tRegion)))

if (screenID == ID_DIRECT)
tRegion = region;

Chapter 16 — Customized Displays 179

180

if (!changedScreen)

changedScreen = VirtualGet (screenID, region.left,
region.top, region.right, region.bottom);
SetPattern(palette, xor);

setviewport (tRegion.left, tRegion.top, tRegion.right, (step 3)
tRegion.bottom, TRUE);
if (All && xor) // Patch for Borland bar() xor bug.

{
for (int i = 0; i < tRegion.right - tRegion.left; i++)
line(i, top - tRegion.top, i, bottom - tRegion.top);
}
else if (fill)
bar(left - tRegion.left, top - tRegion.top,
right - tRegion.left, bottom - tRegion.top):;

for (int i = 0; i < width; i++)
rectangle(left - (tRegion.left - i), top -
(tRegion.top - i), right - (tRegion.left + i)
bottom - (tRegion.top + 1i));
if (screenID == ID_DIRECT)
break;
}
// Update the screen. (step 4)

if (changedScreen)
VirtualPut (screenlID) ;
}

1—The first step for any painting function is to set up the desired region that is to
be painted on the screen. In the case of the Rectangle() function, the programmer
can specify up to two regions. The first region is given by four coordinates: lef, top,
right and bottom. This is the region where the programmer wants to draw the
rectangle or fill region. The second region is specified by clipRegion. This region
is used to describe a constraining screen region where the drawing should be clipped.
The clip region is useful within Zinc Application Framework because unique screen
identifications (described below) are only set up at the window level. Thus a window
may contain several different sub-fields (e.g., buttons, title-bar, border) but all the
objects share the same identification. The way to ensure that one sub-object does not
draw over another sub-object is by specifying a clipRegion that is the true coordinates
of the object that wants to paint to the screen. The object’s true screen coordinates
are contained in the public UI_WINDOW_OBJECT: :true.

2—In the conceptual discussion of display classes, we saw how the display keeps
track of reserved areas on the screen. The second step of each paint routine is used
to determine which areas of the screen have the same identification as that passed
down by the screenID argument. This is done by walking through the list of region
elements and checking their identifications with that specified by screenID. If the
identifications match, and if there is overlap between the screen region and the region
specified by the programmer, the third step is executed. The best way to do this
“clipping” would be to set up all the clip regions at once and then paint the image.
Unfortunately, the BGI graphics library does not have this multiple-clip region

Zinc Application Framework — Programming Techniques

capability. We must, therefore, walk through the list of regions and display the
image each time an overlapping region is found.

NOTE: For operating systems that associate a handle with a window object (e.g.,
Windows, OS/2, Motif), screenID is set equal to the window handle.

3—This step performs the actual operation of drawing information to the screen. The
type of low-level display calls made in this step depend on the type of function that
is called (e.g., Rectangle(), Ellipse(), Polygon()) and whether the fill parameter is
set to TRUE or FALSE.

4—1In order to make the screen drawing faster, the VirtualGet() and VirtualPut()

functions have been added. (See “‘Chapter 2—UI_BGI_DISPLAY” in the
Programmer’s Reference for more details.)

Information Member Functions

There are two information functions associated with the display. TextHeight() is used
to get the maximum height of a string using a specific font. If the font parameter,
logicalFont, has an entry in the font table, its associated value is returned. Otherwise, the
Borland textheight() function is called. TextWidth() is used to get the width of the text
displayed in the current font. Its operation is similar to that of TextHeight().

int UI_BGI_DISPLAY::TextHeight (const char *string, SCREENID,
LOGICAL_FONT logicalFont)
{
logicalFont &= OxOFFF;
SetFont (logicalFont) ;
if (fontTable[logicalFont].maxHeight)
return (fontTable[logicalFont].maxHeight) ;
else if (string && *string)
return (textheight ((char *)string));
else
return (textheight ("Mg"));

int UI_BGI_DISPLAY::TextWidth(const char *string, SCREENID,
LOGICAL_FONT logicalFont)
if (!string || !(*string))
return (0);

SetFont (logicalFont & OxO0FFF);
int length = textwidth((char *)string);

return (length);

Chapter 16 — Customized Displays 181

Graphic display information functions must return the width and height of a string in pixel
values. In addition, the text width or height should be returned, not the cell height and
cell width (defined by the cellWidth and cellHeight values).

Color mapping

Most graphics libraries have special ways of implementing colors. The UI_BGI_-
DISPLAY has a protected member function called MapColor() that maps Zinc UI_-
PALETTE structure information to colors understood by the Borland graphics library.
The code responsible for this conversion is shown below:

COLOR UI_BGI_DISPLAY: :MapColor (const UI_PALETTE *palette, int foreground)
{
// Match the color request based on the type of display.
if (maxColors == 2)
return (foreground ? palette->bwForeground : palette->bwBackground);
else if (maxColors < 16)
return (foreground ? palette->grayScaleForeground :
palette->grayScaleBackground) ;
return (foreground ? palette->colorForeground :
palette->colorBackground) ;

}

If you derive a display class from a different library package, you will need to write a
map function for your display.

Conclusion

182

You should now have a basic understanding of the display operation within Zinc
Application Framework. If you want to support additional displays, use this tutorial as
a template for your implementation.

Remember, each graphics library has its own way of doing things. Even though you are
at a very low-level in the library, you still need to understand the operation of the whole
system. The main things to remember are to be very consistent in your implementation,
make sure that you set up the clip regions properly, and be sure that you understand
where you really want to paint an image.

Zinc Application Framework — Programming Techniques

SECTION V
PORTABILITY ISSUES

Section V — Portability Issues 183

184 Zinc Application Framework — Programming Techniques

CHAPTER 17 — MULTI-LANGUAGE PROGRAMS

One of Zinc Application Framework’s strongest points is its ability to be used across
many different platforms. In the previous chapters we have seen examples of programs
being run on different operating systems, being compiled using different compilers, and
being run using different graphics modes and displays. In this chapter, we will take the
concept of portability one step further in order to achieve language portability.

After studying this tutorial you should understand:

* how simple planning can make programs language-independent
* additional uses for the Zinc data file and Zinc Designer

e international uses for Zinc Application Framework

The source code associated with this program is located in \ZINC\TUTOR\LANGUAGE.
It contains the following files:

LANG.CPP—This file contains the main program loop (i.e., UI_APPLICATION::-
Main()) as well as the following functions:

INTL_WINDOW::INTL_WINDOW()
INTL_WINDOW::New()

LANG_WIN.DAT—This file contains the window objects (created with Zinc
Designer) used in this example.

LANG_WIN.CPP—This file contains the object table and user table for the objects
stored in LANG_WIN.DAT. This file was generated by Zinc Designer.

LANG_WIN.HPP—This file contains the numberIDs and help context indices for
the objects stored in LANG_WIN.DAT. This file was generated by Zinc Designer.

*.DEF, *.RC—These files are the environment specific definition and resource files
required when compiling for Windows or OS/2. (NOTE: The W*.* files are for
Windows and the O*.* files are for OS/2.)

*.MAK—These files are the compiler-dependent makefiles associated with the Lang

program. (See “Chapter 1—Initializing the Library” for information on compiling
for each Zinc-supported platform.)

Chapter 17 — Multi-Language Programs 185

NOTE: This tutorial program makes use of features of the UI_INTERNATIONAL
class that are currently unavailable in the Unix environment. Thus, the Lang program
cannot be compiled for Motif.

Program execution

The operation of this program can be examined by compiling and running the application
LANG.EXE. This program will run in either English, German or Spanish depending on
the current country setting in your system configuration file (e.g., CONFIG.SYS for the
DOS environment). One of the following windows should appear:

In English:

inc user [:h k N ber:
405 South 100 East 2nd Floor eck Number
Pleasant Grove, UT 84062 Date: |773171992

Pay to the order of: Amount:
| [s0.00 |

First National Bank
Pleasant Grove, UT 84062

Memo: r]

186 Zinc Application Framework — Programming Techniques

In German:

Zinc Anwender
405 South 100 East 2nd Floor
Pleasant Grove, UT 84062

ZAHLUNGSEMPFINGER:

Scheck Nummer:
Datum: (773171992

Betrag:

| [s0.00 il

First National Bank
Pleasant Grove, UT 84062

Memo:

In Spanish:

Zinc Operador)
405 South 100 East 2nd Floor
Pleasant Grove, UT 84062

Pagar a la instancia de:

) Numero de cheque:

Fecha: (4/8/1992 |

Valor:

| [s0.00]

First National Bank
Pleasant Grove, UT 84062

Mensaje:

]

In order to have this program run in one of the supported modes, it may be necessary to
change your system configuration file (e.g., CONFIG.SYS for the DOS environment).

For example,

for DOS English you would add:

COUNTRY=001,,C: \DOS\COUNTRY.SYS

Chapter 17 — Multi-Language Programs 187

to your CONFIG.SYS file, for DOS German you would add:
COUNTRY=049, ,C: \DOS\COUNTRY.SYS

to your CONFIG.SYS file, or for DOS Spanish you would add:

COUNTRY=034, ,C:\DOS\COUNTRY.SYS

to your CONFIG.SYS file. Once this change is made, you may need to re-start your
computer. If you have problems or need further assistance in changing your system’s
settings, please consult your operating system manual.

NOTE: The UI_INTERNATIONAL class detects the native international settings on all
environments (i.e., DOS, Windows and OS/2).

Class definition

The international window class is implemented with a class called INTL_WINDOW
(found in LANG.CPP). The INTL_WINDOW definition is given below:

class EXPORT INTL_WINDOW : public UIW_WINDOW
{
public:
static UI_WINDOW_OBJECT *New(const char *name, UI_STORAGE *file = NULL,
UI_STORAGE_OBJECT *object = NULL);

protected:
// This constructor is protected since the name must be
// ‘‘internationalized’’ before it is called.
INTL_WINDOW (const char *name, UI_STORAGE *file = NULL,
UI_STORAGE_OBJECT *object = NULL)
: UIW_WINDOW (name, file, object) { }
}i

This class requires no member variables.

Why INTL_WINDOW?

Upon first glance, the INTL_WINDOW class appears to just make calls to its base class
UIW_WINDOW. While this is true, it does provide a very useful purpose.

Let’s suppose that you are assigned to create a program that will be shipped to several
countries. The program is fairly complex, but you feel that you and your team can
complete it within the allotted time period. However, you are told that it should be
available in three or four different written languages. At the time of your assignment,
management has not decided on all of the specifications. (Sorry for the unlikely

188 Zinc Application Framework — Programming Techniques

scenario). You are told that adding another language is “just a matter of translation’ and
should not affect your development schedule. Since the members of your team have little
or no experience with the required languages, you are assigned a language specialist for
each language.

There are many solutions to this problem: different source code for each language,
compiler directives around I/O calls (requiring different executable files), translation
tables, etc. INTL_WINDOW is a very compact way of addressing this problem.

Design issues

The INTL_WINDOW class is used to load UIW_WINDOW objects from a .DAT file.
In this tutorial, the following window was created using Zinc Designer:

Zinc User Check Number:
405 South 100 East 2nd Floor e i
Pleasant Grove, UT 84062 Date: 77311992

Pay to the order of: Amount:

| [s0.00 |

First National Bank
Pleasant Grove, UT 84062

Memo: [

Since the developer who created this tutorial has English as a first language, English was
used to create the first window. Once the first set of screens has been created, the .DAT
file and Zinc Designer can be given to the language experts. After an introduction to Zinc
Designer, the language experts can translate the English screens to the other languages.
(Currently these are limited to those languages whose letters are part of the ANSI char-
acter set.)

Since each window in the .DAT file is accessed by its stringID, it seems logical that this
variable can be used to help distinguish between the languages as well as the windows.
Before any development is done or any windows are created, some planning needs to be
done. Consider the following steps:

Chapter 17 — Multi-Language Programs 189

1—Make a list of all windows and their stringID’s that will be included in the final
product. (This list is dynamic, but should be accurate.) For example:

Window description generic stringID

About window ABOUT
Main window MAIN
Exit window EXIT

2—Create a short language identifier for each language. This identifier will serve as
a prefix to the stringID for each of the windows. In this tutorial, the language
identifiers are: ENG_ for English, GER_ for German and SPA _ for Spanish.

3—Now assign the stringID’s for each window to be created:

Window description generic stringID English German Spanish

About window ABOUT US_ABOUT GER_ABOUT SPA_ABOUT
Main window MAIN US_MAIN GER_MAIN SPA_MAIN
Exit window EXIT US_EXIT GER_EXIT SPA_EXIT

In the preceding steps, we defined the windows to be used and the stringID for each
window. We have created both generic stringID’s and language-specific stringID’s. The
generic stringID’s will only be used by the programmers to generically refer to a window.
(This allows the programs to be independent of any language.) The language-specific
stringID’s will only be used by the language experts when creating windows using Zinc
Designer. Creating windows and defining stringID’s in this manner allows the same
windows (in different languages) to all reside in the same .DAT file. Since the
programmers will only use the generic stringID’s, there is no need for them to be
concerned about the languages (or number of languages) that are to be implemented.

Using INTL_WINDOW

INTL_WINDOW is designed to load a window from a .DAT file. As a result, only two
member functions are needed: INTL_WINDOW::New() and INTL_WINDOW::-
INTL_WINDOW (found in LANG.CPP). The constructor is used only to call the base
class’ constructor, UIW_WINDOW::UIW_WINDOW(), where all the window-specific
routines and data are kept. The New() function, which does all the country translation,
is listed below:

UI_WINDOW_OBJECT *INTL_WINDOW: :New (const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object)
{

190 Zinc Application Framework — Programming Techniques

// Initialize the UI_INTERNATIONAL information.
if (!UI_INTERNATIONAL::initialized)
UI_INTERNATIONAL: :Initialize();

// Get the current country code.
char langID[5];
switch (UI_INTERNATIONAL: :countryCode)
{
case US:
strcpy (langID, "US_");
break;

case SPAIN:
strcpy (langID, "SPA_");
break;

case GERMANY:
strcpy (langID, "GER_");
break;

default:
// United States English is used by default.
strepy (langID, "US_");
break;

}

// Separate the object’s name request.

char pathName[128], fileName[32], objectName[32], objectPathName[128] ;

UI_STORAGE: :StripFullPath (name, pathName, fileName, objectName,
objectPathName) ;

// Put the new name request back together.

char langObjectName[330];

sprintf (langObjectName, "$s%s~%s%s%s", pathName, fileName,
objectPathName, langID, objectName);

// Load the window.
UI_WINDOW_OBJECT *obj = new INTL_WINDOW(langObjectName, file, object) ;

return obj;

A sample call to INTL_WINDOW is shown below:

// Get the generic ‘‘window’’ from the .DAT file.
UI_WINDOW_OBJECT *window = INTL_WINDOW: :New ("LANG_WIN~WINDOW") ;
*windowManager

+ window;

When INTL_WINDOW::New() is called, it performs the following steps:

1—Initializes the UI_INTERNATIONAL class if it has not already been initialized. The
UILINTERNATIONAL class contains the system’s current country settings. (See the
Programmer’s Reference for more information regarding UI_INTERNATIONAL.)

2—UI_INTERNATIONAL: :countryCode is checked to see if it matches any of the
specified country codes. (The default is United States English.) The country codes used
in this example and by UI_INTERNATIONAL are the same as the country codes used
by DOS. (See the COUNTRY command in the DOS manual for more details.)

Chapter 17 — Multi-Language Programs 191

3—The name parameter is dissected in order to get the stringID of the window being
called. This must always be the generic stringID (discussed above).

4—name is re-built as langObjectName so that the name of the object now includes the
language-specific prefix (described above).

5—The window is loaded.

6—The loaded window is returned. If the window is not found in the .DAT file, a basic
UIW_WINDOW structure is returned.

Conclusion

192

The design presented in this chapter shows that support for international languages can
be added to a program without making the task more complicated for the programmer.
You should now have a good understanding of how simple planning can be useful when
making programs language-independent. You should also understand some additional uses
for the Zinc data file and Zinc Designer, and how Zinc Application Framework can be
used to create international programs.

Zinc Application Framework — Programming Techniques

CHAPTER 18 — INTERNATIONAL CURRENCY

In the previous chapter, we demonstrated Zinc Application Framework’s ability to create
international language support for an application. Continuing with the international theme,
we will examine how to implement an international currency class. In the previous
chapter, internationalization was achieved through the use of the UL_INTERNATIONAL
settings. 1In this chapter we will discuss how to implement the internationalization of
currency independent of the system settings (i.e., as represented by UI_INTER-
NATIONAL). Currency exchanges for the following countries are presented: Germany,
Japan, Spain, United Kingdom and the United States.

After studying this tutorial you should understand:

* how currency values can be translated from one currency to another

e how multiple currency values can be displayed simultaneously

* how messages (i.e., events) can be used to update window objects

* how Zinc Application Framework can be used for international projects.

The source code associated with this program is located in \ZINC\TUTOR\CURRENCY.
It contains the following files:

MONEY.CPP—This file contains the main program loop (i.e., UL_APPLICATION-
::Main()) as well as the following functions:

UIW_INTL_CURRENCY::UIW_INTL_CURRENCY()
UIW_INTL_CURRENCY::New()

MONEY.HPP—This file contains the class definition for UIW_INTL_CURRENCY.
*.DEF, *.RC—These files are the environment specific definition and resource files
required when compiling for Windows or OS/2. (NOTE: The W*.* files are for
Windows and the O*.* files are for 0S/2.)

*MAK—These files are the compiler-dependent makefiles associated with the

Money program. (See “Chapter 1—Initializing the Library” for information on
compiling for each Zinc-supported platform.)

Chapter 18 — International Currency 193

Program execution

The operation of this program can be examined by compiling and running the application
MONEY.EXE. The following window should appear on the screen:

Enter an amount: The exchange value is:

[$100.00 Germany: [DM152.91 |
Japan: [¥13.262.60 |
Spain: [P 10.152.28 |
United Kingdom: ~ [053.54 B
United States: [$100.00 |

In the field entitled “Enter an amount:”, currency values can be typed. Pressing
<ENTER> will take the value entered and translate it to the various currencies listed
under the title “The exchange value is:” and then update the currency objects.

This program begins execution with US dollars as the default currency for the entry field.
However, if you desire to enter a value in German Marks, press <PgDn>. Pressing either
<PgUp> or <PgDn> will cycle through all of the available currencies (listed above).
When you are done experimenting with the international currency program, exit either by
selecting the “Close” option from the system button’s menu, or by typing <Alt+F4>.

Class definition

The international currency object is implemented with a class called UIW_INTL_-
CURRENCY (found in MONEY.HPP). The UIW_INTL_CURRENCY definition is
given below:

class EXPORT UIW_INTL_CURRENCY : public UIW_STRING
{
public:

static NMF_FLAGS rangeFlags;

NMF_FLAGS nmFlags;

UIW_INTL_CURRENCY (int left, int top, int width, UI_BIGNUM *value,
NMF_FLAGS nmFlags = NMF_CURRENCY | NMF_DECIMAL(2),
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
USER_FUNCTION userFunction = NULL, int _countrySetting = ENTRY_US);

194 Zinc Application Framework — Programming Techniques

virtual ~UIW_INTL_CURRENCY (void) {};

virtual EVENT_TYPE Event (const UI_EVENT &event) ;

virtual void *Information (INFO_REQUEST request, void *data,
OBJECTID objectID = 0);

UI_BIGNUM *DataGet (void) ;

void DataSet (UI_BIGNUM *_number) ;

void SetCountryCode(int _countryTableEntry);

int GetCountryCode() ;

protected:
// Default current currency setting is US.
int countryTableEntry;
UI_BIGNUM *number;
void ConvertToSystemSettings (char *string);
void ConvertToLocalSettings(char *string);

}i

This class uses the following member variables:

* rangeFlags is an NMF_FLAGS that gives all of the valid numeric ranges. (NOTE:
Range checking was not implemented for this tutorial.)

* nmkFlags gives the information on how to display and interpret the numeric
information.

* countryTableEntry is the object’s current country number (described later).

* number is a pointer to a UI_BIGNUM that is used to manage the low-level bignum
information. If the WOF_NO_ALLOCATE_DATA flag is set, the UI_BIGNUM is
allocated by the user. Otherwise, it is allocated by UIW_INTL_CURRENCY class.

UIW_INTL_CURRENCY()
The following prototype shows the syntax of the UIW_INTL_CURRENCY class:

UIW_INTL_CURRENCY (int left, int top, int width, UI_BIGNUM *value,
NMF_FLAGS nmFlags = NMF_CURRENCY | NMF_DECIMAL(2),
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
USER_FUNCTION userFunction = NULL, int _countrySetting = US_ENTRY) ;

The international currency constructor returns a pointer to a UIW_INTERNATIONAL
object and is created with the following parameters:

* left;, and top,, is the starting position of the currency object within its parent window.

* width;, is the width of the currency field. (The height of the currency field is
determined automatically by the UIW_INTL_CURRENCY object.)

Chapter 18 — International Currency 195

* value,,,, is a pointer to a U_BIGNUM object.

» nmFlags,, gives information on how to display and interpret the numeric information.
The following flags (declared in UL_WIN.HPP) control the general presentation of
a UIW_INTL_CURRENCY class object:

NMF_DECIMAL(2)—Displays the number with Eéo . 220 ig 0
a decimal point at a fixed location. (NOTE: For py15.290,51
this currency class, a two-digit decimal format

has been set by the constructor.)

NMF_CURRENCY—Displays the number with ié Oé 22 0 ig 0
the country-specific currency symbol. (NOTE: DM15.290,51

This flag has also been set by the constructor.

NMF_CREDIT—Displays the number with the Ei%oéggoigm
‘C and ‘)’ credit symbols whenever the number ' ki
is negative.

o woFlags, are flags (common to all window objects) that determine the general
operation of the currency object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_INTL_CURRENCY
class object:

WOF_AUTO_CLEAR—Automatically clears the numeric buffer if the end-user
tabs to the currency field (from another window field) and presses a key (without
first having pressed any movement or editing keys).

WOF_BORDER—Draws a border around the currency object. In graphics
mode, setting this option draws a single line border around the object. In text
mode, no border is drawn. This is the default argument.

WOF_INVALID—Sets the initial status of the currency field to be “invalid.”
Invalid numbers fit in the absolute range determined by the object type but do
not fulfill all the requirements specified by the program. For example, a
currency may initially be set to $200.00, but the final number, edited by the end-
user, must be in the range “10.00..100.00.” The initial number in this example
fits the absolute requirements of a UI_INTL_CURRENCY class object but does
not fit into the specified range. (NOTE: Range checking is not implemented in
this example. This flag is available for the possibility of user enhancements.)

196 Zinc Application Framework — Programming Techniques

WOF_JUSTIFY_CENTER—Center-justifies the numeric information associated
with the currency object.

WOF_JUSTIFY_RIGHT—Right-justifies the numeric information associated
with the currency object.

WOF_NO_ALLOCATE_DATA—Prevents the currency object from allocating
a numeric value to store the numeric information. If this flag is set, the
programmer must allocate the UI_BIGNUM (passed as the value parameter) that
is used by the currency object.

WOF_NO_FLAGS—Does not associate any special window flags with the
currency object. Setting this flag left-justifies the numeric information. This flag
should not be used in conjunction with any other WOF flags.

WOF_NON_SELECTABLE—Prevents the currency object from being selected.
If this flag is set, the user will not be able to edit the currency information.

WOF_UNANSWERED—Sets the initial status of the currency field to be
“unanswered.” An unanswered number field is displayed as blank space on the

screen.

WOF_VIEW_ONLY—Prevents the currency object from being edited.
However, the currency object may become current.

* userFunction;, is a programmer defined function that is called whenever:
1—the user moves onto the field (i.e., S_CURRENT message),
2—the <ENTER> key is pressed (i.e., L_SELECT message) or

3—the user moves to a different field in the window or to a different window
(i.e., S_ZNON_CURRENT).

The following arguments are associated with userFunction when a new currency is
entered:

returnValue should be 0 if the bignum is valid. Otherwise, the programmer
should call the error system with an appropriate error message and return -1.

Chapter 18 — International Currency 197

object,—A pointer to the U'W_INTL_CURRENCY object or the class object
derived from the UIW_INTL_CURRENCY object base class. This argument
must be typecast by the programmer.

event,—A run-time message passed to the U'W_INTL_CURRENCY object.

ccode,—The logical or system code that caused the user function to be called.
This code (declared in UI_EVT.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed.

S_CURRENT—The currency object is about to be edited. This code is sent
before any editing operations are permitted.

S_NON_CURRENT—A different field or window has been selected. This
code is sent after editing operations have been performed.

Support structures

exchangeRate
The static array, _exchangeRate, contains the exchange rate factors used in this program:

#define MAX_COUNTRIES 5
double _exchangeRate[MAX_COUNTRIES] =

1.000000, 0.654000, 0.009850, 1.867700, 0.007540
}i

Each entry in _exchangeRate contains the factor by which one US dollar would be
multiplied in order to convert US dollars to another currency. Country identifiers are used
to specify a particular entry in the table. The following identifiers are supported:

// Table entry country codes.
#define ENTRY_US 0
#define ENTRY_GERMAN 1
#define ENTRY_SPANISH 2
#define ENTRY_BRITISH 3
#define ENTRY_JAPANESE 4

198 Zinc Application Framework — Programming Techniques

COUNTRY_INFO

Most operating systems only maintain country-specific information for the current country
setting. In DOS, for example, if the current country is the United States, only country-
specific information for the United States would be available from the operating system.
In this tutorial, we must keep a table of the additional countries that we wish to
concurrently support. A structure, countrylnfo, has been created to contain country-
specific currency information. The declaration for countryInfo is shown below:

typedef struct

{
char *currencySymbol;
char thousandsSeparator;
char decimalSeparator;

} countrylInfo;

In order to keep track of the country-specific currency information for all of the supported
countries, an array, _currencylnfo, (of length MAX_COUNTRIES) is used. _currencylnfo
is shown below:

// Country-specific currency formatting information.
countryInfo _currencyInfo[MAX_COUNTRIES] =
{

{ mgr, e, Mar // United States
{ DM, L0), // Germany

{ "R s e g // Spain

{ "Bh et 3, // United Kingdom
T, "8 s el) // Japan

}i

When currency values are displayed, the currency formatting characters are looked-up in
the _currencylnfo table to ensure that the proper formatting characters are used. (NOTE:
Additional information regarding country-specific currency formats is available in your
operating system manual.)

Currency translation

UIW_INTL_CURRENCY maintains its value (i.e., number) according to the country
specifier countryTableEntry. For example, if countryTableEntry is set to ENTRY_US,
number is assumed to be in US dollars. If countryTableEntry is ENTRY_BRITISH,
number is assumed to be in British pounds.

If UIW_BIGNUM, with a user function, were used instead of creating the UIW_INTL_-
CURRENCY class, the currency values could still be translated between currencies.
However, since UIW_BIGNUM uses the country information obtained from the class UL_-
INTERNATIONAL (where it is obtained from the operating system) to format currency
values, it would only use the system’s current currency settings. As a result, if the

Chapter 18 — International Currency 199

200

operating system reports that the current country setting is the United States, all currency
values formatted by UTW_BIGNUM will be in US dollars. On the other hand, UIW_-
INTL_CURRENCY maintains a list of user-defined country information, so that
formatting can be done independent of the operating system country settings. To
overcome this dependency, UITW_INTL_CURRENCY implements two member functions,
ConvertToLocalSettings() and ConvertToSystemSettings(), to format currency strings.

When a currency value is translated from one country to another, it is first converted from
the local UIW_INTL_CURRENCY settings (both value and formatting) to the current
system settings (as specified by UI_INTERNATIONAL). In this state, UIW_INTL_-
CURRENCY can take advantage of the UI_BIGNUM functionality that is already part of
the library. Once a currency value has been modified, it is converted to the current
UIW_INTL_CURRENCY settings in order to be displayed. The following figures show
this interaction:

0.S. has US country setting: 0.S. has German country setting:

German
Currency

British German Japanese Spanish US British German Japanese Spanish US

Fig. 1 Fig. 2

ConvertToSystemSettings()

In order to be processed correctly by UI_BIGNUM, a currency value must be in the
currency format for the current country settings (as specified by UL_INTERNATIONAL).
The following function, ConvertToSystemSettings(), accomplishes this and is shown
below:

Zinc Application Framework — Programming Techniques

void UIW_INTL_CURRENCY: :ConvertToSystemSettings (char *string)
{

char newString[NUMBER_WHOLE+NUMBER_DECIMAL+4];

strcpy (newString, UI_INTERNATIONAL::currencySymbol);

char *ch = string;
int i = strlen(newString);

while(*ch = "\0"
{
if (isdigit(*ch) || *ch == ’-7)
newString([i++] = *ch;
else if (*ch == _currencyInfo[countryTableEntry].decimalSeparator)
for (int j = 0; UI_INTERNATIONAL: :decimalSeparator[j] != "\0’;
J++)
newString[i++] = UI_INTERNATIONAL::decimalSeparator([j];
else if (*ch == —currencyInfo[countryTableEntry].thousandsSeparator)
for (int j = 0; UI_INTERNATIONAL: : thousandsSeparator([j] != '\0’;
J++)
newString[i++] = UI_INTERNATIONAL: :thousandsSeparator[j];
ch++;
}
newString[i++] = ’"\0’;

strcpy (string, newString);

The string argument is in the local currency format and will be modified to be in the
current system country format. It accomplishes this by replacing the current currency
symbol, decimal separator and thousands separator with those defined by UL-
INTERNATIONAL. The input string must be long enough to hold the resulting string.

ConvertToLocalSettings()

In order to be displayed correctly by UIW_INTL_CURRENCY, a currency value must
be in the currency format currently defined by UIW_INTL_CURRENCY. The following
function, ConvertToLocalSettings(), accomplishes this and is shown below:

void UIW_INTL_CURRENCY: :ConvertToLocalSettings (char *string)
{
char newString[NUMBER_WHOLE+NUMBER_DECIMAL+4];
strcpy (newString, _currencyInfo[countryTableEntry] .currencySymbol) ;

char *ch = string;
int i = strlen(newString);

while(*ch = "\0’)
{
if (isdigit(*ch) || *ch == ’-’)
newString[i++] = *ch;
else if (*ch == UI_INTERNATIONAL: :decimalSeparator([0])

newString[i++] =
_currencyInfo[countryTableEntry] .decimalSeparator;
else if (*ch == UI_INTERNATIONAL: : thousandsSeparator([0])
newString[i++] =
_currencyInfo[countryTableEntry] .thousandsSeparator;
ch++;
}

newString[i++] = "\0’;

strcpy (string, newString);

Chapter 18 — International Currency 201

This function converts the string argument from the current system currency settings to
the current UIW_INTL_CURRENCY settings. This is accomplished by replacing the
system currency symbol, decimal separator and thousands separator with those defined by
UIW_INTL_CURRENCY. The input string must be long enough to hold the resulting
string.

User interaction

202

DataGet()

In order to retrieve the value of a UIW_INTL_CURRENCY object, DataGet() has been
defined. DataGet() returns a pointer to a Ul_BIGNUM containing the value of the
UIW_INTL_CURRENCY object. Since UI_BIGNUM does not specify currency
formatting information, you must be careful how it is used. For example, UI_-
BIGNUM::Export(string, NMF_CURRENCY) will return a string that is formatted
according to the system’s current country settings. In other words, if the UIW_INTL_-
CURRENCY is currently set for German currency, the screen representation would be of
the form DM2 . 153, 37, whereas the string representation (after invoking DataGet() and
UI_BIGNUM::Export(string, NMF_CURRENCY)) would be of the form $2,153.37
if the current system’s country setting were for the United States. If Germany were set
as the current country specification for both the system (i.e., U_INTERNATIONAL) and
UIW_INTL_CURRENCY, the screen representation and the string representation would
be of the same format (i.e., DM2.153,37).

The DataGet() function is shown below:

UI_BIGNUM *UIW_INTL_CURRENCY::DataGet(void)
{
// Get the string from the base class.
UIW_STRING: :DataGet () ;

// Convert to current country info.

char newString [NUMBER_WHOLE+NUMBER_DECIMAL+4] ;
strcpy (newString, text);
ConvertToSystemSettings (newString) ;

// Put the new value into the UI_BIGNUM object and return it.

number->Import (newString) ;
return (number) ;

DataSet()
To update an existing UIW_INTL_CURRENCY value, DataSet() has been implemented.

The UI_BIGNUM value is rounded to 2 decimal places (since currency values used in this
tutorial only have 2 decimal places) and then it is exported to a character string. The

Zinc Application Framework — Programming Techniques

character string is converted to the local UIW_INTL_CURRENCY format by calling
ConvertToLocalSettings() and is then displayed on the string (i.e., by calling
UIW_STRING::DataSet()).

void UIW_INTL_CURRENCY: :DataSet (UI_BIGNUM *_number)
{
// Reset the number.

if (number == _number || FlagSet (woFlags, WOF_NO_ALLOCATE_DATA))
number = _number;

else if (_number)
number = new UI_BIGNUM (*_number) ;

else

number = new UI_BIGNUM(OL) ;

// Round the currency value to 2 decimal places.
*number = round(*number, 2);

// Get the text associated with the new number.
number->Export (text, nmFlags | NMF_COMMAS);

// Format the number according to the local country settings.
char newString[NUMBER;WHOLE+NUMBER_DECIMAL+4J;

strcpy (newString, text);

ConvertToLocalSettings (newString);

strcpy (text, newString);

// Display the currency text.
UIW_STRING: :DataSet (text);

Key Mapping

Aside from the currency conversion aspects of this tutorial, the UIW_INTL_CURRENCY
class implements re-mapping of two keys: <PgUp> and <PgDn>. These keys are used
to cycle the current UIW_INTL_CURRENCY field through all of the specified currency
settings. For example, if the current value displayed is $100.00 (i.e., US dollars), pressing
<PgDn> would cause the currency value to change to DM152,91 (i.e., German marks).

An event map entry consists of: the object identification, the logical event, the event type
and the raw code of the event to be mapped. The following key mappings were imple-
mented as part of UIW_INTL_CURRENCY:

#if defined (ZIL_MSWINDOWS)
static UI_EVENT_MAP _eventTable[] =
{

{ ID_INTL_CURRENCY, L_PGUP, WM_KEYDOWN, GRAY_PGUP 1},
{ ID_INTL_CURRENCY, L_PGUP, WM_KEYDOWN, WHITE_PGUP },
{ ID_INTL_CURRENCY, L_PGDN, WM_KEYDOWN, GRAY_PGDN 1},
{ ID_INTL_CURRENCY, L_PGDN, WM_KEYDOWN, WHITE_PGDN 1},

// End of array.
{ ID_END, 0, 0, 0 }
};

Chapter 18 — International Currency 203

#elif defined (ZIL_0S2)
static UI_EVENT_MAP _eventTable[] =
{

{ ID_INTL_CURRENCY, L_PGUP, WM_CHAR, GRAY_PGUP },
{ ID_INTL_CURRENCY, L_PGUP, WM_CHAR, WHITE_PGUP }
{ ID_INTL_CURRENCY, L_PGDN, WM_CHAR, GRAY_PGDN 1},
{ ID_INTL_CURRENCY, L_PGDN, WM_CHAR, WHITE_PGDN 1},

// End of array.
{ ID_END, 0, 0, O }
¥i
#elif defined (ZIL_MSDOS)
static UI_EVENT_MAP _eventTable[] =
{

{ ID_INTL_CURRENCY, L_PGUP, E_KEY, GRAY_PGUP }

{ ID_INTL_CURRENCY, L_PGUP, E_KEY, WHITE_PGUP 1},
{ ID_INTL_CURRENCY, L_PGDN, E_KEY, GRAY_PGDN 1},
{ ID_INTL_CURRENCY, L_PGDN, E_KEY, WHITE_PGDN 1},

// End of array.
{ ID_END, 0, O, 0 }
}i
#elif defined (ZIL_MOTIF)
static UI_EVENT_MAP _eventTable[] =
{

{ ID_INTL_CURRENCY, L_PGUP, KeyPress, XK_Prior }
{ ID_INTL_CURRENCY, L_PGDN, KeyPress, XK_Next 1},

// End of array.

{ ID_END, G, 0, 0 }
}i
#endif

Once this event map is defined, it must be assigned to the UIW_INTL_CURRENCY
object. In UIW_INTL_CURRENCY, this is done in the constructor:

UIW_INTL_CURRENCY: :UIW_INTL_CURRENCY (int left, int top, int width,
UI_BIGNUM *_number, NMF_FLAGS _nmFlags, WOF_FLAGS woFlags,
USER_FUNCTION userFunction, int _countrySetting) : UIW_STRING(left,
top, width, NULL, _maxLength, STF_NO_FLAGS, woFlags, userFunction),
countryTableEntry (_countrySetting), number (NULL), nmFlags(_nmFlags)

UIW_INTL_CURRENCY: :Information (INITIALIZE_CLASS, NULL);
UIW_INTL_CURRENCY: :DataSet (_number) ;
eventMapTable = _eventTable;

Using a modified event map table eliminates the need for looking for special key events
in the object’s Event() routine. By using this table, the Event() routine simply needs
to pass its event argument to LogicalEvent(). LogicalEvent() searches the event map
table for an entry corresponding to the type of event that occurred. For example, if an

204 Zinc Application Framework — Programming Techniques

event of type E_KEY (in DOS) or WM_KEYDOWN (in Windows) containing a raw code
of GRAY_PGUP were received, the logical event type, L_PGUP, would be returned. The
Event() function would check the logical event and perform the desired function. This
example uses the library defined logical events. Consider an alternate implementation that
checks for certain keystrokes and then returns a user-defined event type:

#if defined (ZIL_MSDOS)
static UI_EVENT_MAP _eventTable[] =
{

{ ID_INTL_CURRENCY, L_TRANSLATE_TO_BRITISH, E_KEY, eerl B ¥,
{ ID_INTL_CURRENCY, L_TRANSLATE_TO_GERMAN, E_KEY, Cerl G I,
{ ID_INTL_CURRENCY, L_TRANSLATE_TO_JAPANESE, E_KEY, cexrl J ¥,
{ ID_INTL_CURRENCY, L_TRANSLATE_TO_SPANISH, E_KEY, Ctrl_s },
{ ID_INTL_CURRENCY, L_TRANSLATE_TO_US, E_KEY, Ctrl_U 1},

// End of array.
{ ID_END, 0, O, 0 }

Using this event map, the <Ctrl+ > keys will switch the UIW_INTL_CURRENCY value
from the current country settings to the country settings defined by the logical event
generated. The next section describes how the Event() routine can be used to process
user-defined events.

Event()

When the programmer defines new event types (remembering that these must be above
10000) they will be interpreted as S_ZUNKNOWN (i.e., the are ignored) unless the
programmer also creates a receiver for that event. This is the purpose of the virtual
Event() routine. When the UIW_INTL_CURRENCY::Event() receives an event, it
calls LogicalEvent() to get a logical interpretation of the event, then the logical events
can be used to perform desired actions. For an example, examine the following portion
of UIW_INTL_CURRENCY::Event():

EVENT_TYPE UIW_INTL_CURRENCY::Event (const UI_EVENT &event)

{
EVENT_TYPE ccode = LogicalEvent (event, ID_INTL_CURRENCY) ;
switch (ccode)
{

default:
switch (event.type)
{

Chapter 18 — International Currency 205

case L_TRANSLATE_TO_US:
SetCountryCode (ENTRY_US) ;
break;

case L_TRANSLATE_TO_GERMAN:
SetCountryCode (ENTRY_GERMAN) ;
break;

case L_TRANSLATE_TO_SPANISH:
SetCountryCode (ENTRY_SPANISH) ;
break;

case L_TRANSLATE_TO_BRITISH:
SetCountryCode (ENTRY_BRITISH) ;
break;

case L_TRANSLATE_TO_JAPANESE:
SetCountryCode (ENTRY_JAPANESE) ;
break;

default:
ccode = UIW_STRING: :Event (event) ;
break;
}
}
return ccode;
}

In the above example, the user-defined events are checked to perform currency translation.
By using the event map table (described above), only the logical events need to be
checked since LogicalEvent() handles the keystroke interpretation.

Enhancements

206

There are several enhancements that can be made to UIW_INTL_CURRENCY to provide
a different implementation or additional features. Some of these ideas are described
below. (NOTE: The actual implementation of these ideas is left as an exercise for the
reader.)

1—Instead of “hard coding” the exchange rates, the exchange rate table could be
disk-based so that the table could be more easily modified.

2—If the exchange rate table is disk-based an additional process could be created to
update the table. With this implementation, a monitor could be created to check the
table for updates and then notify each of the UIW_INTL_CURRENCY fields to
update the currency value displayed.

3—When a user enters a new currency value, range checking could be implemented
so that only those values within the specified range would be accepted.

Zinc Application Framework — Programming Techniques

SECTION Vi
PERSISTENT OBJECTS

Section VI — Persistent Objects 207

Zinc Application Framework — Programming Techniques

o0}
(=]
A

CHAPTER 19 - GRAPHIC OBJECTS

The next two tutorials are centered around the topic of persistence. These tutorials are
written so that you can understand the underlying design and implementation of persistent
objects (used for the storage and retrieval of window objects) within Zinc Application
Framework.

Webster’s New Universal Unabridged Dictionary has the following definitions of
persistence:

1. the act of persisting; stubborn or enduring continuance, as in a chosen course or
purpose.

2. a persistent or lasting quality; resoluteness, tenacity.
3. continuous existence; endurance, as of a headache.

4. the continuance of an effect after the cause which first gave rise to it is removed;
as persistence of vision causes visual impressions to continue upon the retina for
some time.

OBJECT ORIENTATION Concepts, Languages, Databases, User Interfaces (Khoshafian
& Abnous. John Wiley & Sons, Inc., 1990, pages 274-275) describes the use of
persistence within computer languages:

“The data manipulated by an object-oriented database can be either transient or
persistent. Transient data is only valid inside a program or transaction; it is lost
once the program or transaction terminates. . . . Persistent data is stored outside
of a transaction context, and so survives transaction updates. There are several
levels of persistence. Usually the term persistent data is used to indicate the
databases that are shared, accessed and updated across transactions. . . . The
least persistent objects are those that are created and destroyed in procedures data
(local data). Next are objects that persist within the workspace of a transaction,
but that are invalidated when the transaction terminates (aborts or commits).
. .. The only type of objects that persist across transactions (and sessions for that
matter) are permanent objects that typically are shared by multiple users.”

Traditional C programming allows for the storage of structures and data within a file. In
C++, however, class objects not only contain structural information, but also contain
unique information that constitutes a class; such as member functions, single and multiple
inheritance, pointers to member functions, etc.

Chapter 19 — Graphic Objects 209

We will use three graphic objects to introduce the concept of persistence. These objects
are a circle, a rectangle and a triangle:

C and C++

The three graphic objects we chose require the following basic information:
Circle—A central screen point and radius value (column, line and radius)
Rectangle—Four rectangle points (left, top, right and bottom)
Triangle—Three triangular points (left-top, left-bottom and right-bottom)

Before we examine the use of persistent objects in C++, let’s examine the code used to
display our graphic objects and justify the use of C++ in our implementation. (The code
is contained in PERSIST1.C and was compiled with the Borland compiler.)

#ifdef __ BORLANDC___
#include <conio.h>
#include <stdlib.h>
#include <graphics.h>

main ()
{
int triangle[] = { 400, 100, 350, 200, 450, 200, 400, 100 };

/* Initialize the screen. */

int mode;

int driver = DETECT;

initgraph(&driver, &mode, OL);

if (graphresult() != grOk)
exit (1) ;

/* Draw the graphic objects. */

circle (100, 150, 50);

rectangle (200, 100, 300, 200);

drawpoly (4, triangle);

/* Get user input then restore the screen. */
getch();

closegraph() ;

return (0);

}
#endif

210 Zinc Application Framework — Programming Techniques

The code shown above compiles with both C and C++ compilers. The conceptual flow
of this program is quite easy to follow:

1—The program initializes the screen (initgraph()).

2—The three objects (circle(), rectangle(), drawpoly()) are drawn to different
areas of the screen.

3—The program waits for user response from the keyboard (getch()).
4—The program restores the screen (closegraph()).

Although this code is very simple, its main drawbacks are that the presentation of each
graphic object is compiler specific, and that there is virtually no concept of a circle,
rectangle or triangle. Some of these problems can be fixed using well structured C code.
Let’s look at another way we could set up a program to display the graphic objects. (This
code resides in PERSIST2.C.)

#define NULL 0L
#include <conio.h>
#include <graphics.h>

struct CIRCLE
{

short column, line, radius;

}:

struct RECTANGLE
{

short left, top, right, bottom;
}:

struct TRIANGLE
{

}i

short triangle[8];

void DrawCircle(struct CIRCLE *sCircle)
{

}

circle(sCircle->column, sCircle->line, sCircle-s>radius);

void DrawRectangle(struct RECTANGLE *sRectangle)
{
rectangle (sRectangle->left, sRectangle->top, sRectangle->right,
sRectangle->bottom) ;
}

void DrawTriangle(struct TRIANGLE *sTriangle)
{

}

drawpoly (4, sTriangle.triangle);

void InitializeDisplay(void)
{
int mode;
int driver = DETECT;
initgraph (&driver, &mode, NULL) ;

Chapter 19 — Graphic Objects 211

if (graphresult () != groOk)
exit (1) ;
}

void RestoreDisplay(void)
{

}

closegraph () ;

main ()
{
/* Initialize the screen and graphic objects. */
struct CIRCLE circle = { 100, 150, 50 };
struct RECTANGLE rectangle = { 200, 100, 300, 200 };
struct TRIANGLE triangle = { 400, 100, 350, 200, 450, 200, 400, 100 };

InitializeDisplay();

/* Draw the objects. */
DrawCircle(&circle);
DrawRectangle (&rectangle) ;
DrawTriangle (&triangle) ;

/* Wait for user response then restore the screen. */
getch();

RestoreDisplay() ;
return (0);

}

This implementation shows the following features:

Structures—Structures are used to represent the graphic objects. Each basic
structure contains data information that is needed to display the object.

Display initialization—This consists of routines that hide the details of screen
initialization and restoration. The functions provided above are InitializeDisplay()
and RestoreDisplay(). The InitializeDisplay() function for Zortech’s Flash
Graphics is as follows:

void InitializeDisplay(void)
{
if (tfg_init())
exit (1) ;
}

Object display function—Each graphic object has an associated Draw() function
(i.e., DrawCircle(), DrawRectangle() and DrawTriangle()) that displays the
object to the screen. The file DRAW.C makes library dependent function calls
supporting a number of graphics libraries.

Features of C allow us to revise the code associated with the actual implementation of
paint functions but provide little benefit with problems of abstraction, encapsulation and
data hiding. An alternative C design (contained in PERSIST3.C), which helps with the
problem of abstraction, is shown below:

212 Zinc Application Framework — Programming Techniques

struct CIRCLE
{

short column, line, radius;
}i

struct RECTANGLE
{

short left, top, right, bottom;
}i

struct TRIANGLE
{

short triangle([8];
¥i

struct GRAPHIC_OBJECT
{
int type;
union
{
struct TRIANGLE triangle;
struct RECTANGLE rectangle;
struct CIRCLE circle;
} graphic;
}i

void DrawObject (struct GRAPHIC_OBJECT *object)
{
if (object->type == ID_CIRCLE)

DrawCircle (object->graphic.circle.column,
object->graphic.circle.line, object->graphic.circle.radius);

else if (object->type == ID_RECTANGLE)

DrawRectangle (object->graphic.rectangle.left,
object->graphic.rectangle.top, object->graphic.rectangle.right,
object->graphic.rectangle.bottom) ;

else if (object->type == ID_TRIANGLE)
DrawTriangle(object->graphic.triangle.triangle);

The super structure and function defined above allows us to provide a level of abstraction
on the graphic objects, but presents several new problems. First, the design is quite
inflexible. For instance, if we were to define a new line object, the GRAPHIC_OBJECT
structure would need to be modified and the DrawObject() function would need to be
modified. As more and more objects were defined, the GRAPHIC_OBJECT structure
would become increasingly complex. Second, the link program, which produces
executable files, would never be able to remove any graphic object’s code from the
executable, even if we never used the object!

The C++ solution to the problems presented above involves:

* Defining an abstract graphic object class with an abstract display routine and
declaring compiler specific instances of the class.

The code implementation of these concepts is shown below. (The actual code is

contained in the file PERSIST.HPP. These examples contain storage and retrieval
functions which will be discussed later on in this chapter.)

Chapter 19 — Graphic Objects 213

#define NULL oL
#include <conio.h>
#include <graphics.h>

class GRAPHIC_OBJECT // Abstract graphic class.
{
public:
virtual void Draw(void) = 0;
static GRAPHIC_OBJECT *New(FILE *file);
virtual void Store(FILE *file)
{ fwrite(&type, sizeof (type), 1, file); }

protected:
short type;

GRAPHIC_OBJECT (short _type) : type(_type) { }
GRAPHIC_OBJECT (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ if (! (flags & L_SKIP_TYPE)) fread(&type, sizeof(type), 1, file); }

private:
struct JUMP_ELEMENT

short type;
GRAPHIC_OBJECT * (*newFunction) (FILE *file, LOAD_FLAGS flags) ;

}i

static JUMP_ELEMENT _jumpTablel[];

i

class CIRCLE : public GRAPHIC_OBJECT
{
public:

CIRCLE (short _column, short _line, short _radius) :
GRAPHIC_OBJECT (ID_CIRCLE), column(_column), line(_line),
radius (_radius) { }

CIRCLE(FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
GRAPHIC_OBJECT (file, flags)

{ fread(&column, sizeof (column), 1, file);
fread(&line, sizeof(line), 1, file);
fread (&radius, sizeof (radius), 1, file); }

virtual void Draw(void)
{ DrawCircle(column, line, radius); }
static GRAPHIC_OBJECT *New(FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ return (new CIRCLE(file, flags)); }
void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store (file) ;
fwrite (&column, sizeof (column), 1, file);
fwrite(&line, sizeof(line), 1, file);
fwrite (&radius, sizeof (radius), 1, file); }

private:
short column, line, radius;
}i
class RECTANGLE : public GRAPHIC_OBJECT
{

public:
RECTANGLE (short _left, short _top, short _right, short _bottom)
GRAPHIC_OBJECT (ID_RECTANGLE), left(_left), top(_top) .,
right (_right), bottom(_bottom) { }
RECTANGLE (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
GRAPHIC_OBJECT (file, flags)
{ fread(&left, sizeof(left), 1, file);
fread(&top, sizeof (top), 1, file);
fread (&right, sizeof(right), 1, file);
fread (&bottom, sizeof (bottom), 1, file); }

214 Zinc Application Framework — Programming Techniques

virtual void Draw (void)
{ DrawRectangle(left, top, right, bottom); }
static GRAPHIC_OBJECT *New (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ return (new RECTANGLE (file, flags)); }
void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store(file) ;
fwrite(&left, sizeof (left), 1, file);
fwrite(&top, sizeof (top), 1, file);
fwrite(&right, sizeof (right), 1, file);
fwrite(&bottom, sizeof (bottom), 1, file); }

private:
short left, top, right, bottom;
}i

class TRIANGLE : public GRAPHIC_OBJECT
{

public:
TRIANGLE (short columnl, short linel, short column2, short line2,
short column3, short line3)
GRAPHIC_OBJECT (ID_TRIANGLE)

(

{ triangle([0] = triangle([6] = columnl,
triangle[l] = triangle([7] = linel,
triangle[2] = column2, triangle[3] = line2,
triangle[4] = column3, triangle[5] = line3; }

TRIANGLE (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
GRAPHIC_OBJECT (file, flags)
{ fread(triangle, sizeof (triangle), 1, file); }

virtual void Draw(void)
{ DrawTriangle(triangle); }
static GRAPHIC_OBJECT *New (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ return (new TRIANGLE (file, flags)); }
void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store (file) ;
fwrite(triangle, sizeof (triangle), 1, file); }

private:
short triangle([8];
}i

main ()

{
// Initialize the screen.
InitializeDisplay () ;

// Initialize the graphics objects.

GRAPHIC_OBJECT *object[3];

object[0] = new CIRCLE(100, 150, 50);

object[1] = new RECTANGLE (200, 100, 300, 200);
object[2] = new TRIANGLE (400, 100, 350, 200, 450, 200);

// Draw the objects.
for (int i = 0; 1 < 3; i++)
{
object[i]->Draw() ;
delete object[i];
}

// Get user input then restore the screen.
getch();

RestoreDisplay () ;

return (0);

The C++ solutions are manifest through the following features:

Chapter 19 — Graphic Objects 215

Classes—The use of class definitions allows us to encapsulate the definition and
description of each graphic object. The C definition required that we define a
structure with each type of object but had no way of grouping the structure and
function information together. Each object’s structure and functions are disjointed,
except for the naming conventions we used to conceptually tie the object and function
together (e.g., CIRCLE, DrawCircle()).

Class scope—The use of “public,” “protected” and “private” members allows us
to hide the implementation details of data and display. For example, in C the
structure CIRCLE contained three variables: column, line and radius. These variables
could be seen throughout the application. In C++, however, this data is hidden. The
circle is created with three arguments, but its implementation is hidden, so far as
external functions are concerned.

Abstraction—The abstraction of the graphics class is accomplished through
inheritance and the use of virtual and pure virtual functions. In addition to the
function abstraction, class abstraction is provided by the graphic object base classes.

Encapsulation—One method of encapsulation can be seen by the late definition of
the window objects. In C, we had to define the structures that would contain the
graphic objects at the front of the routine; with C++ we can wait until the object is
needed. Another method is provided by the class object definitions where both data
and member functions are provided for the CIRCLE, RECTANGLE and TRIANGLE
classes.

The main drawback of the C++ code shown above is the level of complexity placed on
the definition of objects. What originally was a short program has blossomed to over 100
lines of code. This discrepancy is hard to justify when you deal with simple designs.
The real benefit of what we are doing shows up when more objects are declared, or when
more displays are defined.

Basic storage and retrieval

We are now ready to examine the code required to store and retrieve the graphic
information. At this point, we will limit our discussion to the C++ implementation of
storage.

In C++, the storage and retrieval of graphic information is quite easy to implement and
to modify. The following code shows how the TRIANGLE class implements a storage
and a retrieval scheme using a Store() member function and overloaded class constructor.
(The file PERSIST5.CPP contains the code required to store all of the graphics objects.)

216 Zinc Application Framework — Programming Techniques

class GRAPHIC_OBJECT
{
public:
virtual void Draw(void) = 0;
static GRAPHIC_OBJECT *New (FILE *file);
virtual void Store(FILE *file)
{ fwrite(&type, sizeof (type), 1, file); }

protected:
short type;

GRAPHIC_OBJECT (short _type) : type(_type) { }
GRAPHIC_OBJECT(FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ if (! (flags & L_SKIP_TYPE)) fread(&type, sizeof (type), 1, file); }

private:
struct JUMP_ELEMENT
{
short type;
GRAPHIC_OBJECT * (*newFunction) (FILE *file, LOAD_FLAGS flags) ;
}i

static JUMP_ELEMENT _jumpTablel[];
}i

class TRIANGLE : public GRAPHIC_OBJECT
{

public:
TRIANGLE (short columnl, short linel, short column2, short line2,
short column3, short line3) : GRAPHIC_OBJECT (ID_TRIANGLE)
{ triangle[0] = triangle[6] = columnl,
triangle[l] = triangle[7] = linel,
triangle[2] = column2, triangle[3] = line2,
triangle(4] = column3, triangle[5] = line3; }

TRIANGLE (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS) :
GRAPHIC_OBJECT (file, flags)
{ fread(triangle, sizeof(triangle), 1, file); }

virtual void Draw(void)

{ DrawTriangle(triangle); }
static GRAPHIC_OBJECT *New(FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ return (new TRIANGLE (file, flags)); }

void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store(file);
fwrite(triangle, sizeof (triangle), 1, file); }

private:
short triangle[8];
}i

main ()

{
// Initialize the graphics objects.
GRAPHIC_OBJECT *object[3];

object [0] = new CIRCLE(100, 150, 50);
object[1] = new RECTANGLE (200, 100, 300, 200);
object[2] = new TRIANGLE (400, 100, 350, 200, 450, 200);
// Store the objects.
FILE *file = fopen("persist.dat", "wb");
printf ("Generating GRAPHICS.DAT ");
for ‘lint 272703 1 < 35 i+w)
{
printf("*");

object[i]->Store(file);
delete object[i];

Chapter 19 — Graphic Objects 217

printf (" Done!\n");
fclose (file) ;

return (0);
}

With this implementation, each graphics object has an associated Store() function and
overloaded file constructor. The Store() function is declared virtual by the base
GRAPHIC_OBJECT class so that the derived class’ store functions will be called when
we store each of our objects. The code above shows how all three graphic objects can
be stored to disk. The code required to read the same three objects from disk is shown
below (contained in PERSIST6.CPP):

main ()

{
// Set up the graphics screen display.
InitializeDisplay () ;

¥4 Load the graphics objects.
FILE *file = fopen("persist.dat", "rb");
GRAPHIC_OBJECT *object([3];

object[0] = new CIRCLE(file);
object[1] = new RECTANGLE (file);
object[2] = new TRIANGLE (file);
fclose(file) ;

// Draw the objects.
for (int i = 0; i < 3; i++)
{
object[i]->Draw() ;
delete object[i];
}

// Get user input then restore the screen.
getch();

RestoreDisplay () ;

return (0);

Abstract storage and retrieval

The only drawback with the first implementation of storage was its requirement for us to
call specific class constructors (e.g., CIRCLE::CIRCLE(file)). Complete abstraction
requires us to make three subtle but significant modifications to our design. You may
recall that, up to this point, we had to know the type of object we were reading and
writing. The only way to remove this restriction is to push the work on the base class
GRAPHIC_OBJECT. The way we do this is to first re-define the base Store() function
to store the type of graphic object before the object stores its information. (The DOS
version of this code is contained in PERSIST7.CPP, the Windows version is contained
in WPERSIST.CPP, the OS/2 version is contained in OPERSIST.CPP and the Motif
version is contained in MPERSIST.CPP)

class GRAPHIC_OBJECT
{

218 Zinc Application Framework — Programming Techniques

public:
virtual void Store(FILE *file)
{ fwrite(&type, sizeof (type), 1, file); }

}i

Next, we need to change the derived object classes so that they call GRAPHIC._-
OBJECT::Store() before they store any information. An example of how this change
is implemented is shown by the RECTANGLE class:

class RECTANGLE : public GRAPHIC_OBJECT
{

public:
void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store(file);
fwrite(&left, sizeof (left), 1, file);
fwrite(&top, sizeof(top), 1, file);
fwrite(&right, sizeof (right), 1, file);
fwrite(&bottom, sizeof (bottom), 1, file); }

The second major change we must make concerns object retrieval. This change requires
us to write static New() functions for all graphic objects, including the base GRAPHIC_-

OBIJECT class. The code below shows how the RECTANGLE and GRAPHIC_OBIJECT
classes are modified.

class GRAPHIC_OBJECT
{

public:
virtual void Draw(void) = 0;
virtual void Store(FILE *file)
{ fwrite(&type, sizeof (type), 1, file); }
static GRAPHIC_OBJECT *New(FILE *file);

}

class RECTANGLE : public GRAPHIC_OBJECT
{

public:
RECTANGLE (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
GRAPHIC_OBJECT (file, flags)
{ fread(&left, sizeof(left), 1, file);
fread(&top, sizeof (top), 1, file);
fread (&right, sizeof (right), 1, file);
fread(&bottom, sizeof (bottom), 1, file); }
static GRAPHIC_OBJECT *New(FILE *file)
{ return (new RECTANGLE (file)); }

Chapter 19 — Graphic Objects 219

The New() functions associated with derived graphic objects are used to provide a
jumping point to the object’s class constructor. (In C++, we cannot get the address of a
constructor directly.)

The base GRAPHIC_OBJECT::New() function uses a privately defined jump table that
contains four entries: one for CIRCLE, one for RECTANGLE, one for TRIANGLE and
one that is used as an end-of-array indicator.

class GRAPHIC_OBJECT
{

private:
struct JUMP_ELEMENT
{
short type;
GRAPHIC_OBJECT * (*newFunction) (FILE *file);
Yi

static JUMP_ELEMENT _jumpTablel[];

i

GRAPHIC_OBJECT: : JUMP_ELEMENT GRAPHIC_OBJECT::_jumpTable[] =
{

ID_CIRCLE, CIRCLE::New },

ID_RECTANGLE, RECTANGLE::New },

ID_TRIANGLE, TRIANGLE::New },

0, NULL }

e

Yi

The derived base class New() function is used as the abstract constructor and is not
placed in the table. Let’s look at how our code changes when we use GRAPHIC_-
OBJECT::New() instead of each graphic object’s constructor.

main ()

{
// Set up the graphics screen display.
InitializeDisplay();

FILE *file = fopen("persist.dat", "rb");
int fileObjects = 1;
do
{
GRAPHIC_OBJECT *object = GRAPHIC_OBJECT::New(file) ;
if (object)
{
object->Draw() ;
delete object;
}
else
fileObjects = 0;
} while (fileObjects) ;
fclose(file) ;

// Get user input then restore the screen.
getch();

RestoreDisplay () ;

return (0);

220 Zinc Application Framework — Programming Techniques

You can see that there is no specific reference to any particular graphics object, only the
base GRAPHIC_OBIJECT class. When GRAPHIC_OBJECT::New() is called, it reads
the type information from disk. Then it searches its jump table to find the identification
found when the type was read. Once that identification is found, it calls the associated
New function for the type.

This implementation gives us the total abstraction we wanted at a relatively small
inconvenience. Let’s review the steps required to implement the simple persistence for
graphic objects:

1—We defined an abstract GRAPHIC_OBJECT class containing a pure virtual
Draw() function that is used by derived classes to paint information to the screen.

2—We defined a virtual Store() function that is used to store the graphic object
information. The base GRAPHIC_OBJECT::Store() function just stores the object
type, whereas the derived classes each store their private information.

3—We defined a static New() function for each graphic object class. The derived
objects’ New() functions are used by the base GRAPHIC_OBJECT::New()
function to provide jump points to the class constructors. The base New() function
is used by our program to provide abstract retrieval of graphic objects.

This concludes the introduction of persistent objects. The next tutorial shows you how

Zinc actually implements this strategy to store and retrieve window objects that you can
use in your applications.

Chapter 19 — Graphic Objects 221

222 Zinc Application Framework — Programming Techniques

CHAPTER 20 - ZINC WINDOW OBJECTS

The previous tutorial should give you a good introduction of how simple persistent objects
are implemented. Zinc Application Framework retrieves window objects created by the

interactive design tool. For example, the “Hello, World!” tutorial loaded the following
two windows from disk:

Hello World Window
ello, World!

Age: IAI least 4 1/2 billion years. l
Weight: LB.[I sextillion metric tons. I

Size: 124,901 .55 miles circumference. —I

Makeup: |oxygen -- 46.6%
silicon -- 27.7%
aluminum -- 8.1%
iron -- 5.0%
calcium -- 3.6%
other -- 9.0%

The earth is the third planet in distance outward ﬁ
from the sun. It is the only planetary body in the

solar system known to have conditions suitable
for life.

The retrieval of these two objects from disk required only two lines of constructor code
This code is shown below:

// Add two windows to the window manager.
*windowManager

+ new UIW_WINDOW("hello.dat “HELLO_WORLD_WINDOW")
+ new UIW_WINDOW("hello.dat WORLD_INFORMATION WINDOW") ;

Chapter 20 — Zinc Window Objects 223

Implementation details

The basic design of persistent objects in Zinc Application Framework is centered around
three fundamental points: class object storage, class object retrieval and low-level file
support.

A discussion of these points requires that you understand the window object hierarchy
supported by Zinc Application Framework:

|WINDOW OBJECT HIERARCHY|J

[uweomper | | [uw.icon | [uw_promeT |
(other programmer
defined window
[uw_sutTon | [uw.stAne | [um_winoow | - obiects

IW_MAXIMIZE_BUTTON IW_BIGNUM I_WINDOW_MANAGER

IW_MINIMIZE_BUTTON IW_DATE IW_COMBO_BOX

IW_POP_UP_ITEM IW_FORMATTED_STRING IW_GROUP

IW_PULL_DOWN_ITEM IW_INTEGER IW_HZ_LIST

IW_SYSTEM_BUTTON IW_REAL IW_POP_UP_MENU

IW_TITLE IW_TIME IW_PULL_DOWN_MENU

IW_SCROLL_BAR
IW_TEXT
IW_TOOL_BAR
IW_VT_LIST

Class object storage

Zinc objects store information to disk through the use of virtual Store() member
functions. The base UI_WINDOW_OBIJECT class contains the initial definition of
Store(). The code below shows the base class definition of Store():

class UI_WINDOW_OBJECT : public UI_ELEMENT
{
public:

virtual void Store(const char *name, UI_STORAGE *file = NULL,
UI_STORAGE_OBJECT *object = NULL);

The arguments passed to this function are used in the following manner:

e name contains the object name, or a name that contains the drive, directory, file and
object path name. The name of the object is distinguished from a drive path by using
the < (tilde) character. A full path name is required if no file is specified. Some
example path names are shown below:

224 Zinc Application Framework — Programming Techniques

d:\zil\data\myfile " WINDOW
window.dat "HELLO
WORLD_INFORMATION_WINDOW

* file is a pointer to the file that contains the object information. The default argument
NULL allows you to read an object from disk without first opening a file. In this
case, UL_WINDOW_OBJECT::Store() object opens the file and the top-level
object closes the file.

* object is a pointer to the object to be stored. The default argument is NULL to allow
you to store this object (i.e., the object that contains the Store() function) to disk.

Whenever we derive an object from the base UL WINDOW_OBJECT class, we define
a virtual Store() function for the derived object. For example, the UIW_BUTTON class
contains a virtual function with the same parameters as the base class.

class UIW_BUTTON : public UI_WINDOW_OBJECT
{

public:
virtual void Store(const char *name, UI_STORAGE *file = NULL,
UI_STORAGE_OBJECT storeFlags = NULL);

}

When an object is stored, its Store() function is called by the controlling class. It calls
the base class object before storing any information itself so that the base object can store
information common to all window objects. As the object works its way back down the
inheritance tree, each class stores the information it will need when the object is read back
from disk. The code below shows how the UIW_POP_UP_ITEM class implements two
levels of inheritance:

void UIW_POP_UP_ITEM::Store(const char *name, UI_STORAGE *directory,
UI_STORAGE_OBJECT *file)
{
// Store the pop-up item information.
UIW_BUTTON: :Store(name, directory, file);
file->Store (mniFlags) ;
menu.Store (NULL, directory, file);
}

void UIW_BUTTON::Store(const char *name, UI_STORAGE *directory,
UI_STORAGE_OBJECT *file)
{

}

void UI_WINDOW_OBJECT::Store(const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object)

{
// Write the base object information to disk.

Chapter 20 — Zinc Window Objects 225

Class object retrieval

Window objects are loaded from disk in a manner similar to that used when storing the
object. Instead of a Store() function, however, the control is provided by an overloaded
constructor that takes the object name, file pointer and special load flags. Here is an
example of how the UIW_POP_UP_ITEM class object defines this retrieve capability:

class UIW_POP_UP_ITEM : public UIW_BUTTON

{
public:
UIW_POP_UP_ITEM(const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object);

}

The retrieval code works in a similar manner to that used by the store operation. For
example, here is the code that loads the UIW_POP_UP_ITEM class:

UIW_POP_UP_ITEM: :UIW_POP_UP_ITEM (const char *name, UI_STORAGE *directory,
UI_STORAGE_OBJECT *file) : UIW_BUTTON(O, O, 1, NULL, BTF_NO_3D,
WOF_NO_FLAGS), menu(0, 0,

WNF_NO_FLAGS, WOF_BORDER, WOAF_TEMPORARY | WOAF_NO_DESTROY),
mniFlags (MNIF_NO_FLAGS)

// Initialize the pop-up item information.
UIW_POP_UP_ITEM: :Load (name, directory, file);
UI_WINDOW_OBJECT: :Information (INITIALIZE_CLASS, NULL) ;
UIW_BUTTON: : Information (INITIALIZE_CLASS, NULL);
UIW_POP_UP_ITEM: :Information (INITIALIZE_CLASS, NULL) ;
UIW_BUTTON: :DataSet (text) ;

}

In this example, the pop-up item first calls the button constructor, then the Load()
functions are called to load the data for each inherited class.

Low-level file support

The final component is low-level file support. In Zinc, the low-level storage and retrieval
operations are performed by a class called UI_STORAGE_OBJECT. This class has
several member functions that are designed specifically for persistent object imple-
mentation. A partial listing of the class is given below:

226 Zinc Application Framework — Programming Techniques

class EXPORT UI_STORAGE_OBJECT
{

friend class EXPORT UI_STORAGE;
public:

int objectError;

OBJECTID objectID;

char stringID[32];

UI_STORAGE_OBJECT (void) ;

UI_STORAGE_OBJECT (UI_STORAGE &file, const char *name,
OBJECTID nobjectID, UIS_FLAGS pflags = UIS_READWRITE) ;

~UI_STORAGE_OBJECT (void) ;

int Load(char *value);

int Load (UCHAR *value) ;

int Load(short *value);

int Load (USHORT *value) ;

int Load(long *value);

int Load(ULONG *value);

int Load(void *buff, int size, int len);

int Load(char *string, int len);

int Load(char **string);

void Touch (void) ;

UI_STATS_INFO *Stats(void);

UI_STORAGE *Storage(void)

int Store(char value);

int Store(UCHAR value) ;

int Store(short value);

int Store (USHORT value) ;

int Store(long value;

int Store(ULONG value);

int Store(void *buff, int size, int len);

int Store(const char *string);

}:

The main components of this class are:

* Load() is an overloaded function that allows objects to read portable information
from disk.

* Store() is an overloaded function that allows objects to write portable information
to disk.

Conclusion

There are two catches to the implementation scheme described in this chapter. First, we
need to maintain an object table that gives us a handle on the file constructors. This table
is automatically created by Zinc Application Framework when you store information to
disk. You just need to compile and link the file in your application.

Second, the use of virtual Store() functions and the overloaded file constructor is not
handled properly by current versions of compilers. They are not able to link out virtual
functions that are never used. The way we get around this problem is to use #ifdef
statements around the persistent object functions. The library source code contains the
#ifdef directive ZIL_PERSISTENCE. If you re-compile the source code, with

Chapter 20 — Zinc Window Objects 227

228

ZIL_PERSISTENCE not defined, a version of Zinc without persistent object capabilities
will be created. This may be useful for applications that are known to never use
persistent objects, since it will keep the executable size smaller.

You should now be familiar with the implementation details associated with persistent

objects. Their use can greatly improve the size and implementation of windows in your
application.

Zinc Application Framework — Programming Techniques

SECTION VIl
ZINC DESIGNER

Section VIl — Zinc Designer 229

230 Zinc Application Framework — Programming Techniques

CHAPTER 21 - GETTING STARTED

Zinc Designer is an interactive tool created in order to save you, the programmer, time
and effort in developing Zinc Application Framework applications. This chapter discusses
the overall layout of the interactive design tool, as well as the basic procedures used in
creating resources with it. (See “Chapter 3—Using Zinc Designer” for more information
about using and creating resources.)

THE DESIGNER SCREEN
Overview

When you enter Zinc Designer, a main control window similar to the following appears:

This control window includes eight main elements:
* A title bar that identifies this window as the main control window of Zinc Designer.
When a specific application is being created, the title also includes the name of the

current file.

* A system button, which, when selected, displays the following pop-up menu:

Chapter 21 — Getting Started 231

232

Move
Size
Minimize
Maximize

Close Alt+F4

Switch To..

Ctrl+Esc

Restore—Restores the window to its original size if it is in either a maximized
or a minimized state.

Move—Allows the window to be moved.
Size—Allows the window to be sized relative to the top left corner.
Minimize—Reduces the window to a minimized object (i.e., icon).
Maximize—Enlarges the window to its maximum size.
Close—Removes the window from the screen and exits the program.
A maximize button that, when selected, enlarges the window so that it occupies the
entire screen. Selecting this button when the window is already in its maximized

state causes the window to return to its original size.

A minimize button that, when selected, reduces the window to its smallest
representable form.

A pull-down menu from which the main action items can be selected for interaction
within the Designer. The options associated with the menu bar are described in
further detail below.

An object bar containing buttons that display various window objects. Selecting one
of these buttons allows the associated object to be added to the current resource.
Interaction with the object bar is described in further detail below.

A status bar, which displays information associated with the current object. The

fields associated with the status bar are described in further detail below.

Zinc Application Framework — Programming Techniques

e A help bar, which displays the help context associated with the current field.

The menu bar

Using the options presented as menus in the main window of Zinc Designer, applications
can be created and saved for use at run-time. Selecting some menu items causes an
action to take place immediately, while selecting others causes a related window to
appear, from which more options are available. Menu items that cause another window
to appear are distinguished by ellipses (...). A brief explanation of each menu item
follows:

File—This menu consists of options that control the creation of files and exiting from
the program. The selectable items on this menu are: New..., Open..., Save, Save
As..., Delete..., Preferences... and Exit.

Edit—This menu consists of options that edit or control the operation and
presentation of objects within an application. The edit options are: Object...,
Advanced, Cut, Copy, Paste, Delete, Move and Size.

Resource—This menu consists of options that control the creation of resources within
the current file. The selectable items are: Create, Load..., Store, Store As..., Import,
Edit..., Clear, Delete... and Test...

Object—This menu presents the objects, divided into four groups, that can be created
with the Designer. The four groups presented in the first pull-down menu are: Input,
Control, Menu and Static. Selecting one of these items causes another menu to
appear which contains the actual window objects of that group.

Utilities—This menu allows access to the two utility editors of Zinc Designer. The
selectable options are Image Editor and Help Editor.

Help—This menu provides a list of the following selectable help contexts: Index,
File, Edit, Object, Resource, Utilities and About designer.

All of these menu items are discussed in more detail in their respective chapters that

follow.

The object bar

The object bar presents some of the available window objects within Zinc Designer. It
is designed to allow you to easily select these items with a mouse and then attach them

Chapter 21 — Getting Started 233

directly to your current resource. When one of the objects is selected, its name appears
in the “place object” field on the status bar, where it remains until it is attached to a
window, or until another object is selected from the object bar. The object is attached to
a resource by positioning the cursor on the desired location and clicking the mouse button.

By default the objects on the object bar are displayed by their bitmap representations, but
they can also be displayed as text only or as text and bitmaps. (See the Preferences
section in “Chapter 22—File Options” for information on how to alter the object bar
defaults.)

NOTE: Not all of the window objects available in Zinc Designer are represented on the
object bar. For the complete set of objects, the Object option must be used.

(See Chapters 26 through 29 for more information on creating and modifying window

objects.)

The status bar

The status bar displays the state of the current resource on the screen. The following
fields are present:

object—Indicates what the current object is.
stringlD—Displays the string identification of the current object.

pos—Indicates the position, in cell coordinates, of the current object. If the current
object is attached to a parent window, its position is relative to that parent window.

size—Indicates the size, in cells, of the current object (width by height).
place object—Indicates the object that has been most recently selected from the

object bar (or from the Object options menu) that is ready to be placed on a resource
window.

HOW TO START

Once you have entered Zinc Designer, the following steps can be followed for creating
a basic application:

234 Zinc Application Framework — Programming Techniques

1—Open a new file for the application by selecting File | New... Select the drive and
directory to which the file is to be saved, and enter a name for the file at the “File
Name™ prompt. If all of the information is correct, select the “OK” button. (To
move between fields without a mouse, use the <Tab> key.)

2—Create a new resource by selecting Resource | Create. A generic window will
appear on the screen that can be moved and sized.

3—Attach the desired objects to the window:

a) Select the objects with the mouse directly from the object bar, or select them
from the Object menu options.

b) Position the cursor in the window at the desired location and press the left
mouse button.

4—Edit the objects:

a) Call the editor by double clicking on the object itself, or double click on the
resource window and then select the object from the “objects” field.

b) Change the default information by positioning the cursor on a field, pressing
the left mouse button, and entering the new information. Flags are toggled
by clicking on the associated check box. (Refer to Chapters 26 through 29
for specific information on the capabilities of each object.) When all of the
necessary information is entered, select the “OK” button.

5—Save the current resource by selecting Resource | Store As... If you want to name
the resource something other than the default “RESOURCE_1" enter a name for it
at the “stringID” prompt. Select the “OK” button to close the window and store
the resource.

6—Save the current file by selecting File | Save.

7—Test the resource by selecting Resource | Test... and interacting with the objects.
When you are done testing it, select the “Exit Test” button.

8—Create the help contexts to be associated with the resource window and its fields:
a) Select Utilities | Help Editor.

b) Select Context | New and enter a name for the context name at the “Context
Name” prompt. Select the “OK” button.

Chapter 21 — Getting Started 235

¢) Enter the title to be displayed on the help window’s title bar.

d) Move the cursor to the “message” field and enter the text to be displayed
in the help window.

e) Save the context by selecting Context | Save.

f) Repeat steps ‘b’ through ‘e’ for each context to be created.

g) Close the help editor by selecting Context | Exit.

h) Call the editor for each object and select the help context to be associated
with it from the “helpContext” combo box list. Select the editor’s “OK”
button.

9 Repeat steps 5 and 6 to save the new information to the resource and the file.

10—To add other resources to the current file, repeat steps 2 through 9.

236 Zinc Application Framework — Programming Techniques

CHAPTER 22 - FILE OPTIONS

The File category options control the general operations of Zinc Designer. Selecting
“File” causes the following menu to appear:

Save As...

Delete...

Preferences...

Exit

NEW

The “New...” option allows you to create a new file. Selecting it causes a window
similar to the following to appear:

Chapter 22 — File Options 237

File Name: |*.dat

Directory: c:\dos

Drives: Directories:

& ..

File name

If you want to open a new file for an application, enter the name for the new file here.
If you do not include it yourself, a .DAT extension will be automatically attached to the
name when the file is actually created.

Directory

The current directory is shown at the “Directory” prompt. Your file will be saved to this
directory. Since this item is not selectable, if you want to make a different directory the
current one, it must be done by selecting a new directory from the Directories menu
(discussed below).

Drives

This field displays other drives that are available on your system. Selecting a drive causes
the files and directories on that drive to be displayed in their respective fields.

238 Zinc Application Framework — Programming Techniques

Directories

This field displays other available directories of the current drive. *..” represents the
parent directory, and, if selected, will display the other sub-directories of the current path,
all of which are also selectable.

Files

Other .DAT files created with Zinc Designer that belong to the current directory are listed
in the scrollable field below “Files.” If one of these files is selected, its name will
appear at the “File Name” prompt, indicating that it is to be opened. (For more
information on opening a previously created file, see the explanation for the “Open”
option below.)

OK

Selecting this button causes a file to be created which will be given the name entered at
the “File Name™ prompt. If creation of the file is successful, the “New” window will
close and the title bar of the control window will be updated to include the name of the
current file. If no information has been entered within the “New” window and the
“OK” button is selected, you will receive an error message.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about creating new files appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “New” window.

OPEN

L3

The “Open...” option allows you to open a previously created file. Selecting it causes
a window to appear that is similar to the ‘“New’” window:

Chapter 22 — File Options 239

File Name: F.dat

Directory: c:\dos

Drives: Directories:

& ..

File name

To open an existing file, you can enter the name at the “File Name™ prompt, or you can
select it from the “Files” field, and the name of the file will automatically appear at the
prompt.

Directory

The current directory is shown at the “Directory” prompt. Since this item is not
selectable, if you want to make a different directory the current one, it must be done by
selecting a new directory from the “Directories” menu (discussed below).

Drives

This field displays the available drives on your system. If you want to make a different
drive the current drive, select the desired drive from the drive list.

240 Zinc Application Framework — Programming Techniques

Directories

This field displays other available directories. “..”” represents the parent directory, and,
if selected, will display the other sub-directories of the current path, all of which are also
selectable.

Files

Other .DAT files created with Zinc Designer that belong to the current directory are listed
in the scrollable field below ‘Files.” If one of these files is selected, its name will
appear at the “File Name” prompt.

OK

Selecting this button causes the file specified at the “File Name” prompt to be opened.
If the open procedure is successful, the window will close and the title bar of the control
window will be updated to include the name of the current file. If the file entered at the
“File Name” prompt does not exist, you will receive an error message at this time. If
no information has been entered within the “Open” window, you will receive an error
message.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about opening existing files appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “Open” window.

SAVE

Selecting the “Save” option causes the current file to be saved in its present condition.
If the file has never been named, the “Save As” window will appear and allow you to
name the file by entering a name at the “File Name” prompt. When you select the
“OK” button, the “Save As” window will close and the file will be saved under that

Chapter 22 - File Options 241

name. (See the Save As section for further details on how to save a file for the first
time.)

Upon every save operation, Zinc Designer automatically creates the following four files:

e a “.DAT” file, which contains the binary information associated with the objects
saved in the application

e a “.CPP” file, which contains the definition for _objectTable, an array that provides
the function read access points for objects saved to disk, as well as the definition for
_userTable, an array of function access points for user and compare functions.

e an “.HPP” file, which contains the numeric identifications (entered as stringID’s)
unique to each field

* one or more “.BK#” (i.e., backup) files, specified in File | Preferences. (NOTE:

Only one backup file is created per Designer session and only if a previous .DAT file
existed.)

SAVE AS

“Save As...” is usually used to either save a file that has not been previously named or
to save the current file under another name. Selecting it causes a window to appear that
is similar to the “New” and “Open” windows:

242 Zinc Application Framework — Programming Techniques

File Name: Eat

Directory: c:\dos

Drives: Directories:

ss——

File name

Enter a name for the file at the “File Name” prompt, or select it from the “Files” field,
and the name of the file will automatically appear at the prompt. If you do not include
it yourself when entering the name at the prompt, a .DAT extension will be automatically

attached when the file is actually created. A new file will be created under that name
with the current modifications, if any.

Directory
The current directory is shown at the Directory prompt. Since this item is not selectable,

if you want to make a different directory the current one, it must be done by selecting a
new directory from the Directories menu (discussed below).

Drives

This field displays the available drives on your system. If you want to make a different
drive the current drive, select the desired drive from the drive list.

Chapter 22 - File Options 243

Directories

9

This field displays other available directories. represents the parent directory, and,
if selected, will display the other sub-directories of the current path, all of which are also
selectable.

Files

OK

Other .DAT files created with Zinc Designer that belong to the current directory are listed
in the scrollable field below “Files.” If one of these files is selected, its name will
appear at the “File Name” prompt, and the current application can be saved to the
specified file when the “OK” button is selected.

Selecting this button causes the file to be saved under the name entered at the “File
Name” prompt. If the save operation is successful, the “Save As” window closes.

If you have entered a file name that already exists, a modal window will appear,
indicating such. If you select the “Yes” button of this window, the current information
replaces the previous information of that file, and both the modal window and the “‘Save
As” windows close. Selecting the “No” button simply closes the modal window and
allows you to enter information again in the “Save As” window.

If no information has been entered within the “Save As” window and you select the
“OK” button, the window will close and no other action will take place.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

244

Additional information about saving files appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “Save As” window.

Zinc Application Framework — Programming Techniques

DELETE

The “Delete...” option allows you to delete a file.

Selecting it causes a window similar
to the following to appear:

File Name: |*.dat

Directory: c:\dos

Drives: Directories:

3 a: (=

=3 b:

File name

To delete a file, you can enter the name at the “File Name” prompt, or you can select
it from the ““Files” field, and the name of the file will automatically appear at the prompt.

Directory

The current directory is shown at the Directory prompt. Since this item is not selectable,

if you want to make a different directory the current one, it must be done by selecting a
new directory from the Directories menu (discussed below).

Chapter 22 — File Options 245

Drives

This field displays other drives that are available on your system. Selecting one of the
drives causes the directories and files on that drive to be displayed in their respective
fields.

Directories

This field displays other available directories. “..” represents the parent directory, and,
if selected, will display the other sub-directories of the current path, all of which are also
selectable.

Files

Other files created with Zinc Designer that belong to the current directory are listed in the
scrollable field below Files. If one of these files is selected, its name will appear at the
“File Name” prompt.

OK

Selecting this button causes a modal window to appear which is similar to the following:

ﬁ j\tutorthellovtemp.dat
This file will be deleted

The purpose of this window is to make sure that you want to delete the file. If you select
the “OK” button, the file indicated at the “File Name” prompt is deleted, and both the
confirmation window and the “Delete” window close. If you choose the *“Cancel”
button, the file is not deleted and just the modal window closes.

246 Zinc Application Framework — Programming Techniques

If the name of the current file is entered, or if the file entered does not exist, you will
receive an error message when the “OK” button is selected.

If no information has been entered within the window, selecting “OK” causes an error

message to appear.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about deleting files appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “Delete” window.

PREFERENCES

The “Preferences...”” option allows you to change the default settings of Zinc Designer.
Selecting it causes a window similar to the one below to appear:

Chapter 22 - File Options 247

Backups (0..9): Mini-cell width:

rOptions [1 |+ [10 |
(<] Object Bar & Help Bar Mini-cell height:
[status Bar (< Bitmaps in Menus |1 | 7 |1|] I

Object Bar Buttons:
[Chk Box [Hz-Scroll Pop Menu Object Buttons

Hz-List B4 vt-Scroll B4 Tool Bar @ Bitmap
Vi-List Window B4 Prompt
O Text

[X] Combo Pull Menu Group

O Bitmap and Text

Backups

Enter in this field the number of backups that you would like the designer to maintain.
Each backup file will be saved under the same name as the main file but with an
extension that indicates the backup number of the copy. For example, a file with the
name of TEST.DAT will have a backup copy called TEST.BK1 if only “1” is entered
at the prompt. If any number greater than ““1” is entered at the prompt, each time a save
operation occurs another backup file will be created, up to the maximum specified. For
example, a ““3” at the prompt will cause the creation of a TEST.BK1 file at the first save
operation, a TEST.BK2 file at the second save, and a TEST.BK3 at the third save.
Thereafter, these three backup files would be updated on subsequent saves, with the most
recent information being saved in TEST.BK1 and the oldest information in TEST.BK3.

Options

This field presents the options for what can be displayed in Zinc Designer’s control
window. Each option is presented as a check box that toggles, and any number can be
selected at one time. The options available are:

248 Zinc Application Framework — Programming Techniques

Object Bar—Causes an object bar to be displayed in the upper-most available region
of the window. (NOTE: An object bar will always appear above a status bar if both
are present within a window.)

Status Bar—Causes a status bar to be displayed in the upper-most available region
of the window.

Help Bar—Causes a help bar to be displayed in the lower-most available region of
the window.

Bitmaps in Menus—Allows bitmap images to be displayed in menus.

Mini-Cell

This field allows you to set the default coordinate mini-cell ratios. The default width and
height are 1/10.

Object Bar Buttons

This field contains the objects that can be included in an object bar. Selecting one causes
it to be represented on the tool bar in the format specified by “Object Buttons” (i.e.,
bitmap and/or text). Each is presented as a check box that toggles, and any number can
be selected at one time.

Object Buttons

This field contains the options for the presentation of object buttons.
Bitmap—Allows only bitmap images to be displayed on an object button.
Text—Allows only text to be displayed on an object button.

Bitmap and Text—Allows both bitmaps and text to be displayed on an object
button.

OK

Selecting this button closes the “Preferences” window and causes the information
selected to take effect. If no information has been entered within the window, it will
close and no other action will take place.

Chapter 22 — File Options 249

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about default settings appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the ‘‘Preferences’” window.

EXIT

Selecting the “Exit” option allows you to exit Zinc Designer. If you have not saved the
current file, a modal window will appear that asks whether or not you want to save it
before exiting. Selecting the “Yes” button causes the file to be saved and then exits out
of the program. Selecting “No” causes the program to exit without saving the current
file (i.e., any changes made since the last save operation will be lost). Selecting the
“Cancel” button simply closes the modal window.

If you have not made any changes within Zinc Designer, selecting “Exit”’ causes a modal
window to appear which is similar to the following:

0 This will close Zinc Designer.

The purpose of this window is to make sure that you want to exit Zinc Designer. If you
select the “OK” button, the program exits. If you choose the “Cancel” button, the
program does not exit and the modal window closes.

250 Zinc Application Framework — Programming Techniques

CHAPTER 23 - EDIT OPTIONS

The Edit category options are used to edit the appearance and performance of objects
within the current file. Selecting “Edit” causes the following menu to appear:

Object Utilities

Cut

Copy
Paste
Delete

OBJECT

Each object created with Zinc Designer can be modified through interaction with its object
editor. Selecting “Object...” causes the editor for the current object to appear, which is
similar to the following:

Chapter 23 — Edit Options 251

text: | Item I ---wnFlags---

value: C‘ [] WwNF_AUTO_SORT

userFunction: | B (] WNF_BITMAP_CHILDREN
[] WNF_NO_WRAP

] WNF_SELECT_MULTIPLE
stringID: [FIELD_2) s

helpContext: [(None) [] BTF_REPEAT

objects: [] BTF_SEND_MESSAGE
---woFlags---
[] WOF_NON_SELECTABLE
---woAdvancedFlags---

[] wOAF_NON_CURRENT

The object editor controls the general presentation of the object. Since each object has
its own specific requirements, the fields of each editor will vary, but all contain one or
more of the following fields:

text—This field allows you to enter information to be displayed within the object
exactly as you want it to appear in your application. Objects that use the “text”
field are: string, text, button, radio button, check box, pull-down item, pop-up item,
prompt and group. Some objects have a field similar to “text,” but they use the
name of the object in place of “text.” These objects are: date, time, bignum, integer
and real.

userFunction and compareFunction—If you want to have a user function or a
compare function associated with the object, you can enter the name of it in this field.
The function must be defined somewhere in your code under the same name that is
entered so that Zinc Designer can find it and execute the designated action. (For
more information on creating user functions and compare functions, refer to the
description of the object’s constructor in the Programmer’s Reference.)

stringID—This field contains the string identification for the object and is present in
every object editor (except for horizontal and vertical scroll bars). The default string
identification for a resource window is “RESOURCE” plus a unique number
corresponding with the order in which it was created. For example, the screen

Zinc Application Framework — Programming Techniques

identification for the first resource window created on the screen would be
“RESOURCE_1.” The default string identification for an object attached to another
object is “FIELD” plus a unique number corresponding with the order in which it
was attached to the parent resource. The number given to the first object is actually
0, so, for example, the screen identification for the second object created within a
resource window would be “FIELD_1.”

Because these objects appear in lists in other locations within the program, it is
recommended that you override the default identification and enter a string that more
specifically identifies the object. The identification will appear in all locations
exactly as you have entered it in the object’s editor.

objects—This field displays the objects, listed in the order in which they were
created, that are attached to the current object. To access the editor of one of these
listed objects, select it with a mouse or scroll to it and press <Enter>.

options and flags field—This field is located on the right side of every object’s
editor, and it displays flags or options which control the general presentation and
operation of the current object. All of these items are listed with check boxes, which
display an ‘X’ when they are currently in effect. To toggle a flag or option from
non-current to current or vice versa, select it by either clicking on it with the mouse
or by scrolling to it and pressing <space>. There is no limit to the number of flags
that can be in effect at a given time; however, if two flags are selected that present
conflicting information, such as “Center Justify” and “Right Justify,” only the flag
listed first in the field will have effect.

(See Chapters 26 through 29 for more specific information regarding individual field
objects.)

Each object editor also includes three buttons, which operate in the following manner:
OK—Selecting this button saves the edit information and closes the object editor
window. The current object will reflect the editing changes immediately. If no
information has been entered within the object editor, its window will close with no

other action taking place.

Cancel—Selecting this button causes the window to close without executing any
changes.

Help—Aadditional information about the current object appears when this button is
selected.

Chapter 23 — Edit Options 253

A help bar is also included in each object editor that displays help on how to interact with
the edit window’s fields.

ADVANCED

Selecting the “Advanced” option allows the advanced properties of an object to be
edited. (NOTE: These properties should only be changed by experienced users!)

The Advanced Edit window is shown below:

userFlags:

clazs name [dernived):

The advanced properties that may be edited include:

userFlags—used to set the userFlag member variable associated with each object.
Since Zinc Designer does not import the user-defined include files, the numeric
representation of the user flags must be entered.

class name (derived)—is the name of the derived class to inherit the properties of
the object being edited. If this field is left blank, no derived object will be created.
If a name is entered into this field (e.g., EXAMPLE_CLASS), the object table in the
.CPP file (generated by the designer) will contain an entry for the derived object’s
New() function (e.g., EXAMPLE_CLASS::New()). As part of the code for the
derived class, the programmer must create a static New() function that is able to call
the constructor for the derived class. For an example of creating a New() function,
see “Chapter 14—Help Bar” of this manual. The .HPP file (generated by the
designer) will contain a definition of the derived class’ identification (i.e., an
OBIJECTID for the derived class).

254 Zinc Application Framework — Programming Techniques

CuT

Selecting the “Cut” option removes the current object from the screen and places it in
a global paste buffer.

COPY

Selecting the “Copy” option copies the current object and places the copy in a global
paste buffer.

PASTE

Selecting ““Paste” allows you to recall and position on the screen the contents of the
global paste buffer (placed there by Cut or Copy procedures). After selecting *“Paste,”
position the cross hair cursor (+) where you would like the paste to occur and press the
left mouse button.

DELETE

Selecting “Delete” removes the current object from the screen and deletes it from the
file.

MOVE

Selecting “Move” allows you to move the current object either by dragging the mouse
or by using the arrow keys.

SIZE

Selecting ““Size” allows you to size the selected region from the bottom right corner
either by dragging the mouse or by using the arrow keys.

Chapter 23 — Edit Options 255

256 Zinc Application Framework — Programming Techniques

CHAPTER 24 - RESOURCE OPTIONS

The Resource category options allow you to create, modify and retrieve objects in the
current file. Only windows can be saved as resources, but they can have any number of
objects attached to them. Selecting “Resource” causes the following menu to appear:

Delete...

Test...

CREATE

Selecting “Create” automatically places the following window on the screen, complete
with a title bar, a system button, and minimize and maximize buttons.

Chapter 24 — Resource Options 257

Any object can be attached to this window by selecting it from the object bar, or from the
Object menu, and positioning it in the resource window. (See “Chapter 25—Object
Options” for more information on creating window objects.)

LOAD

“Load...” is used to recall a previously created resource from the current file. Selecting
it causes a window similar to the following to appear:

258 Zinc Application Framework — Programming Techniques

StingID: |

Resources:
[None)

stringlD

Enter the string identification of the resource to be loaded, or by selecting it from the
“Resources” field, the stringID will automatically be displayed at the “stringID” prompt.

Resources

This field displays the resources that are available in the current file. The resources are
listed by their stringID’s in alphabetical order. If one of these is selected, its string
identification will appear at the “stringID” prompt.

OK

Selecting this button causes the resource designated at the “stringID” prompt to be
loaded. If the load operation is successful, the “Load Resource” window closes and the
resource window, containing its child objects (if any), appears on the screen in the exact
location and condition it was last stored.

If nothing has been entered at the “stringID” prompt, or if the stringID entered does not

exist, upon selecting the “OK” button you will receive a message indicating that the
resource cannot be found.

Chapter 24 — Resource Options 259

Cancel

Selecting this button causes the window to close without executing any changes.

Help

STHINE

STORE AS

Additional information about loading resources appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “Load Resource” window.

Once the resource has been loaded and appears on the screen, it is the current object and
can be modified in any way. When the Resource | Store option is subsequently selected,
the resource will be saved in its present condition, replacing the original version. (See
the Store and Store As sections of this chapter for more information on storing resources.)

Selecting the “Store” option causes the current resource to be saved in its present con-
dition to the current file. The name given the resource will be the string identification
which appears at the “stringID”’ prompt of both the resource window’s editor and on the
control window’s status bar. If you have not entered a different name for the resource
in its editor or through a “Store As” operation, the stringID given it will be “RE-
SOURCE” plus a unique number corresponding with the order in which it was created.
For example, the screen identification for the first resource created in a file would be
“RESOURCE_1.”

NOTE: Each time a store operation is performed, the previous contents of the resource
are completely replaced by the current information.

260

“Store As...” is generally used to store the current resource under another name.
Selecting it causes a window to appear that is similar to the following:

Zinc Application Framework — Programming Techniques

StringlID: “

Resources:
RESOURCE_1

stringlD

Enter a name for the resource at the “stringID” prompt, or, if you want to replace a
previously created resource with the current information, select one from the “Resources”
field, and the string identification for that resource will automatically appear at the
prompt.

Resources

This field displays the resources that are available in the current file. The resources are
listed by their stringID’s in alphabetical order. If one of these is selected, its string
identification will appear at the “stringID” prompt and the current application will
replace the previous contents of that resource when the “OK” button is selected.

OK

Selecting this button causes the resource to be stored under the identification entered at
the “stringID” prompt. If the save operation is successful, the ‘“Store Resource”
window closes.

If no information has been entered within the ““Store Resource” window and you select
the “OK” button, the window will close and no other action will take place.

Chapter 24 — Resource Options 261

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about storing resources appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the ““Store As” window.

EDIT

Each object created with Zinc Designer can be modified through interaction with its object
editor. Selecting “Edit...” causes the editor of the current object to appear. The object
editor controls the general presentation of the object. It can also be called by selecting
Edit | Object while the object is current or by clicking twice on an object. (See Chapters
26 through 29 for further information on object editors.)

The resource editor (i.e., UIW_WINDOW editor) is invoked by selecting the Resource
| Edit menu option (when the resource is current) or by double clicking the left mouse
button on the body of the window. The UIW_WINDOW editor will appear similar to the
following:

Zinc Application Framework — Programming Techniques

title: | Title ---Options---
minlcon: l (None) (] Border
[[] Maximize Button
) [[] Minimize Button
stringlD: [RESOURCE_1 B
helpContext: I[None] ; ---woFlags-—-
objects: FIELD_1 [] wOF_BORDER
[] wOF_MINICELL
4 FIELD
-3 [] wOF_NON_FIELD_REGION
[] wOF_NON_SELECTABLE
A adEL

Objects attached to a window may be deleted from within the resource editor. To delete
an object, position the cursor (i.e., highlight bar) on the desired object and press
<Ctrl+Del>. To re-order the window objects, position the cursor (i.e., highlight bar) on
the desired object and press the <Ctrl+T> or <Ctrl+{> keys. Each time <Ctrl+T> is
pressed, the highlighted object will be moved up one space in the object list. Similarly,
each time <Ctrl+\> is pressed, the highlighted object will be moved down one space in
the object list. (NOTE: The tab sequence of the objects in the window is the order of
the objects in the object list.)

CLEAR

Selecting “Clear” causes the current resource to be removed from the screen. It does
not, however, delete the resource from the file. If you have not stored the current
resource immediately before, selecting “‘Clear” causes a modal window to appear that
asks if you want to store it before clearing it from the screen. Selecting “Yes” causes
it to be stored and then cleared, selecting “No” causes it to be cleared without storing
it first, and selecting “Cancel” simply closes the modal window and the resource is
neither stored nor cleared.

Chapter 24 — Resource Options 263

DELETE

The “Delete...” option allows you to delete a resource from the current file. Selecting
it causes a window similar to the following to appear:

StringID: |

Resources:
[(None)

stringID

Enter the string identification of the resource to be deleted, or select the desired resource
from the ‘“Resources” field and the stringID will automatically be displayed at the
prompt.

Resources

This field displays the resources that are available in the current file. The resources are
listed by their stringID’s in alphabetical order. If one of these is selected, its string
identification will appear at the “stringID”” prompt.

OK

Selecting this button causes a modal window to appear which is similar to the following:

264 Zinc Application Framework — Programming Techniques

The purpose of this window is to make sure that you want to delete the resource. If you
select the “OK” button, the resource indicated at the “‘stringID”” prompt is deleted from
the current file, and both the confirmation window and the “Delete Resource” window
close. If you choose the “Cancel” button, the resource is not deleted and just the
confirmation window closes.

If the resource entered does not exist, you will receive an error message when the “OK”
button is selected.

If no information has been entered within the window, selecting “OK” causes an error
message to appear.

If the delete operation is successful, the “Delete Resource” window closes and the

resource window, including its child objects (if any), is removed from the screen and is
deleted from the current file.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about deleting resources appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “Delete Resource” window.

Chapter 24 — Resource Options 265

TEST

The “Test” option allows you to test the objects of your current application resource so
that you can see how they will function for an end user. Selecting “Test” causes the
control window to be cleared from the screen and moves your application into test mode,
which looks similar to the following:

Testing

Title

@® Radio-button
(O Radio-button
[] check-box
[] check-box

In test mode the objects of your application will look and act as they will for an end user.
For example, check boxes and radio buttons will actually toggle and scroll bars will
actually scroll information. No objects can be created or modified while in test mode.

When you have finished testing the resource, select the “Exit Test” button and the screen

will return to normal mode. The control window will be displayed again, and you will
be able to modify your application in any manner.

266 Zinc Application Framework — Programming Techniques

CHAPTER 25 - OBJECT OPTIONS

The Object category provides options that allow you to actually create objects. Selecting
“Object” causes the following menu to appear:

File Edit Resource

Each of the options on this menu is a category under which several window objects are
classified. Selecting one of the options causes another associated menu to appear, which
lists the actual window objects of that category.

To create an object, select it from the associated menu. Position the mouse cursor where
you want the object to appear on the resource window and either press the left mouse
button or press <Enter>.

NOTE: All objects must be attached to a resource parent window; they cannot be
attached directly to the screen. (See ‘“Chapter 24—Resource Options” for more
information on creating resource windows.)

The editor of each of these objects can be accessed by any of the following methods:

e Select Edit | Object while the object is current

e Select Resource | Edit while the parent resource window is current; then select the
desired object from the edit window’s list of objects

e Press <Enter> while the object is current

e Click twice on the object with the mouse

Chapter 25 — Object Options 267

I .
i Each editor varies according to the specific object, but the general format of all editors
H is similar to the following:

text: lStlind | ---stFlags---
maxLength: [] STF_LOWER_CASE
[] STF_PASSWORD
userFunction: r | [] STF_UPPER_CASE
[] STF_VARIABLE_NAME
e ,FIELDJ I é"\:f:'f:g:[jm CLEAR
helpContext: lﬁne] E R w DF—BURDE &

The object editor controls the general presentation of the object. Since each object has
its own specific requirements, the fields of each editor will vary, but all contain one or
more of the following fields:

text—This field allows you to enter information to be displayed within the object
exactly as you want it to appear in your application. Objects that use the “text”
field are: string, text, button, radio button, check box, pull-down item, pop-up item,
prompt and group. Some objects have a field similar to “text,” but they use the
name of the object in place of “text.” These objects are: date, time, bignum, integer
and real.

‘ userFunction and compareFunction—If you want to have a user function or a

‘ compare function associated with the object, you can enter the name of it in this field.

3 The function must be defined somewhere in your code under the same name that is
entered so that the user table, created by Zinc Designer, can find it and execute the
designated action. (For more information on creating user functions and compare
functions, refer to the description of the object’s constructor in the Programmer’s
Reference.)

stringID—This field contains the string identification for the object and is present in
every object editor (except for horizontal and vertical scroll bars). The default string
identification for a resource window is “RESOURCE” plus a unique number
corresponding to the order in which it was created. For example, the screen
identification for the first resource window created on the screen would be

268 Zinc Application Framework — Programming Techniques

“RESOURCE_1.” The default string identification for an object attached to another
object is “FIELD” plus a unique number corresponding to the order in which it was
attached to the parent resource. The number given to the first object is actually 0,
so, for example, the screen identification for the second object created within a
resource window would be “FIELD_1.”

Because these objects appear in lists in other locations within the program, it is
recommended that you override the default identification and enter a string that more
specifically identifies the object. The identification will appear in all locations
exactly as you have entered it in the object’s editor.

helpContext—This field designates the help context to be associated with the string.
Select the combo box button to view a list of the available help contexts. If you
select one of the help contexts listed, the help message of that context will be
displayed whenever the user positions on the string and requests help. (See the Help
Editor section of ‘“Chapter 30—Help Options” for information on creating help
contexts.)

objects—This field displays the objects, listed in the order in which they were
created, that are attached to the current object. To access the editor of one of these
listed objects, select it with the mouse or scroll to it and press <Enter>.

flags and options field—This field is located on the right side of every object’s
editor, and it displays flags or options which control the general presentation and
operation of the current object. All of these items are listed with check boxes, which
display an ‘X’ when they are currently in effect. To toggle a flag or option from
non-current to current or vice versa, select it by either clicking on it with the mouse
or by scrolling to it and pressing <space>. There is no limit to the number of flags
that can be in effect at a given time; however, if two flags are selected that present
conflicting information, such as ““Center Justify”” and “Right Justify,” only the flag
listed first in the field will have effect.

Other fields that are more specific to individual objects are discussed in Chapters 26
through 29.

Each object editor also includes three buttons, which operate in the following manner:
OK—Selecting this button saves the edit information and closes the object editor
window. The current object will reflect the editing changes immediately. If no

information has been entered within the object editor, its window will close with no
other action taking place.

Chapter 25 — Object Options 269

Cancel—Selecting this button causes the window to close without executing any
changes.

Help—Additional information about the current object appears when this button is
selected.

A help bar is also included in each object editor that displays help on how to interact with
the edit window’s fields.

To test how an object will actually appear and function for the end user, try it in test
. mode, which is accessed by selecting Resource | Test while the parent resource is active.
i‘ (See the Test section of ‘‘Chapter 24—Resource Options” for more information on testing
objects.)

A description of each window object, grouped according to its category type, is

documented in the following four chapters. For more specific information on how these
objects are created, refer to the respective chapters of the Programmer’s Reference.

270 Zinc Application Framework — Programming Techniques

CHAPTER 26 - INPUT OBJECTS

The input category includes objects that are used specifically for data input. Selecting the
“Input” option causes the following associated menu to appear:

Formatted String
Text

Date
Time

Bignum
Integer
Real

STRING

A string object is used to present and collect alphanumeric string information. Selecting
“String” causes the following object to appear:

String

The string object may be placed on a window by clicking (i.e., on the window) with the
left mouse button. To modify the string object, call its editor by double clicking the
mouse on the object. The following window will appear:

Chapter 26 — Input Objects 271

text: I String| —l ---stFlags---
wasLengtic [] STF_LOWER_CASE
[] STF_PASSWORD
userFunction: | | n STF_UPPER_CASE
[] STF_VARIABLE_NAME
stringID: [FIELD_1 | "\:f]';g:;m g
helpContext: | [None) = =

text

Enter text in this field exactly as you want it to appear in the string object. If it contains
more characters than the “maxLength” limitation allows, only the number of characters
that fall within the limit will be displayed. If the string object is not long enough to
display all of the entered text, it can be sized using the mouse or the arrow keys.

maxLength

The number in this field determines the number of characters that the string object will
display. The default length is 20. The maximum length is 32,767.

userFunction

If you want to have a user function associated with the string object, enter in this field
the name of the function. This user function must be defined somewhere in your code
so that the user table, created by Zinc Designer, can retrieve it.

stringlD

Enter in this field a string that will distinguish the string object from other objects.

272 Zinc Application Framework — Programming Techniques

helpContext

This field designates the help context to be associated with the string. Select the combo
box button to view a list of the available help contexts. If you select one of the help
contexts listed, the help message of that context will be displayed whenever the user
positions on the string and requests help. (See the Help Editor section of “Chapter
30—Help Options™ for information on creating help contexts.)

flags

The flags that control the presentation of the string object are listed in the field on the
right half of the edit window. The flags are:

STF_LOWER_CASE—Converts all character input to lowercase values.

STF_PASSWORD—Causes the characters entered into the string field to not be
echoed to the screen; rather, the “.” or “ ” character (depending on the
environment) is printed for each character typed.

STF_UPPER_CASE—Converts all character input to uppercase values.
STF_VARIABLE_NAME—Converts the space character to an underscore value.

WOF_AUTO_CLEAR—Automatically clears the string buffer if the end user tabs
to the string field (from another window field) then presses a key (without first
having pressed any movement or editing keys).

WOF_BORDER—Draws a single-line border around the string object in graphics
mode. In text mode, no border is drawn.

WOF_INVALID—Sets the initial status of the string field to be “invalid.” By
default, all string information is valid. A programmer may specify a string field as
invalid by setting this flag upon creation of the string object or by re-setting the flag
through the user function (discussed above). For example, a string field may initially
be set to be blank, but the final string edited by the end user must contain some
instructional information. In this case the initial string information does not fulfill
the programmer’s requirements.

WOF_JUSTIFY_CENTER—Center-justifies the string information within the string
field.

Chapter 26 — Input Objects 273

WOF_JUSTIF Y_RIGHT—Right-justifies the string information within the string
field.

WOF_MINICELL—Uses mini-cell values to determine the string object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_F IELD_REGION—Causes the string to not be a form field. If this
I flag is set the string will occupy all the remaining space of its parent window.

WOF _NON_SELECTABLE—Prevents the string object from being selected. If this
flag is set, the end user will not be able to edit or position on the string information.

;‘ WOF_UNANSWERED—Sets the initial status of the string field to be “unan-
\-‘* swered.” An unanswered string field is displayed as blank Space on the screen.
|

| WOF_VIEW_ONLY—Prevents the string from being edited. If this flag is set, the

! end user will not be able to edit the string information but will be able to browse
{ through the string.

WOAF_NON_CURRENT—The string cannot be made current. If this flag is set,
users will not be able to select the string from the keyboard nor with the mouse.

CORMATTED STRING: 1 vt i 1

A formatted string object is used to display and collect information that requires a specific
format. For example, telephone numbers and zip codes are best presented as formatted
strings. Selecting “Formatted String” causes the following object to appear:

To modify the formatted string object, call its editor. The following window appears:

274

Zinc Application Framework — Programming Techniques

compressedT ext: I|

editMask: |

deleteT ext:

userFunction: I

stringlD: FIELD_2

helpContext: I[N one)

compressedText

---woFlags---

[WOF_AUTO_CLEAR

[wOF_BORDER

[] WOF_INVALID

[] WOF_JUSTIFY_CENTER
[] WOF_JUSTIFY_RIGHT
[] WOF_MINICELL

[] WOF_NON_SELECTABLE
[] WOF_UNANSWERED

Enter text in this field as you want it to initially appear in the formatted string object. It
must conform to the specifications set by the “editMask’ and “‘deleteText” fields. For
example, a string “8017858900” would be appropriate for a formatted telephone number.

editMask

This field determines the type of characters that the formatted string will accept. The
following characters can be used to define the edit mask:

a—Allows the end user to enter a space (‘ ’) or any letter (i.e., ‘a’ through ‘z’ or ‘A’

through ‘7).

A—Same as the ‘a’ character option except that a lower-case letter is automatically

converted to an upper-case letter.

c—Allows the end user to enter a space (‘ °), a number (i.e., ‘0’ through ‘9’), or any
alphabetic character (i.e., ‘a’ through ‘z’ or ‘A’ through ‘7).

C—Same as the ‘c’ character option except that a lower-case character is automati-

cally converted to upper case.

Chapter 26 — Input Objects

275

L—Uses this position as a literal place holder. Using this character causes the
formatted string to get the character to be read and displayed from the literal mask.
The end user cannot edit this character.

N—Allows the end user to enter any digit.
x—Allows the end user to enter any printable character (i.e., ° through ‘~’).

X—Same as the ‘x’ character option except that a lower-case letter is automatically
converted to an upper-case alphanumeric character.

Enter in the “editMask” field a string of characters that will define the acceptable format
for the string. For example, an edit mask of “LNNNLLNNNLNNNN” would be
appropriate for a formatted telephone number.

deleteText

Enter into this field a string of literal characters that will be used whenever a character
is deleted from a particular position in the formatted string. For example, a string of
“(...) ...-....” would be appropriate for a formatted telephone number.

userFunction

If you want to have a user function associated with the formatted string object, enter in
this field the name of the function. This user function must be defined somewhere in
your code so that the user table, created by Zinc Designer, can retrieve it.

stringlD

Enter in this field a string that will distinguish the formatted string object from other
objects.

helpContext

This field designates the help context to be associated with the formatted string. Select
the combo box button to view a list of the available help contexts. If you select one of
the help contexts listed, the help message of that context will be displayed whenever the
user positions on the formatted string and requests help. (See the Help Editor section of
“Chapter 30—Utilities Options” for information on creating help contexts.)

276 Zinc Application Framework — Programming Techniques

flags

The flags that control the presentation of the formatted string object are listed in the field
on the right half of the edit window. The flags are:

WOF_AUTO_CLEAR—Automatically clears the string buffer if the end user tabs
to the field (from another window field) then presses a key (without first having
pressed any movement or editing keys).

WOF_BORDER—Draws a single-line border around the formatted string object in
graphics mode. In text mode, no border is drawn.

WOF_INVALID—Sets the initial status of the formatted string field to be “invalid.”
By default, all formatted string information is valid. A programmer may specify a
formatted string field as invalid by setting this flag upon creation of the formatted
string object or by re-setting the flag through the user function. For example, a
formatted string field for a phone number may initially be setto (000) 000-0000,
but the final string edited by the end user must contain some valid phone number.
In this case the initial string information does not fulfill the programmer’s require-
ments.

WOF_JUSTIFY_CENTER—Center-justifies the text information within the
formatted string field.

WOF_JUSTIFY_RIGHT—Right-justifies the text information within the formatted
string field.

WOF_MINICELL—Uses mini-cell values to determine the formatted string object’s
position. Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for
more precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the formatted string to not be a form field.
If this flag is set the formatted string will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the formatted string object from being
selected. If this flag is set, the end user will not be able to edit or position on the
formatted string information.

WOF_UNANSWERED—Sets the initial status of the formatted string field to be

“unanswered.” An unanswered formatted string field is displayed as blank space on
the screen.

Chapter 26 — Input Objects 277

WOAF_NON_CURRENT—The formatted string object cannot be made current.
If this flag is set, users will not be able to select the formatted string from the
keyboard or with the mouse.

TEXT

A text object is used to present and collect alphanumeric textual information in a multi-
line format. Selecting “Text” causes the following box to appear:

Text

To modify the text object, call its editor. The following window will appear:

---options---

[] Vertical Scroll Bar

[C] Horizontal Scroll Bar
---wnFlags---
WNF_NO_WRAP
---woFlags---
WOF_AUTO_CLEAR
maxLength: WOF_BORDER
userFunction: | | | woF_INvALID

[] wOF_MINICELL

[] wOF_NON_FIELD_REGION
stiinglD: |FIELD_3 | |C] woF_NON_SELECTABLE
helpContext: |[None) [] WOF_UNANSWERED

text: Texy

278 Zinc Application Framework — Programming Techniques

text

Enter text in this field exactly as you want it to appear in the text object. If it contains
more characters than the “maxLength” limitation allows, only the number of characters
that fall within the limit will be displayed. If the text object is not long enough to display
all of the entered text, it can be sized using the mouse or the arrow keys.

maxLength

The number in this field determines the number of characters that the text object will
display. The default length is 100. The maximum length is 32,767.

userFunction

If you want to have a user function associated with the text object, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table, created by Zinc Designer, can retrieve it.

stringIlD

Enter in this field a string that will distinguish the text object from other objects.

helpContext

This field designates the help context to be associated with the text field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the text field and requests help. (See the Help Editor section of “Chapter
30—Utilities Options” for information on creating help contexts.)

options and flags

The options that control the presentation of the text field are listed in the upper portion
of the field on the right half of the edit window. These options are:

Vertical Scroll Bar—Places a vertical scroll bar inside the right border of the text
field.

Horizontal Scroll Bar—Places a horizontal scroll bar inside the bottom border of the
text field.

Chapter 26 — Input Objects 279

The flags that control the presentation of the text object are listed in the field in the lower
portion of the field on the right half of the edit window. The flags are:

WNF_NO_WRAP—Disables the default word wrap in the text field.

WOF_AUTO_CLEAR—Automatically clears the text buffer if the end user tabs to
the text field (from another window field) and then presses a key (without having
previously pressed any movement or editing keys).

WOF_BORDER—Draws a single-line border around the text object in graphics
mode. In text mode, no border is drawn.

WOF_INVALID—Sets the initial status of the text field to be ‘“invalid.” By
default, all text information is valid. For example, a text field may initially be set to
be blank, but the final text field edited by the end user must contain some
instructional text. In this case the initial text information does not fulfill the
programmer’s requirements.

WOF_MINICELL—Uses mini-cell values to determine the text object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD REGION—Prevents the text object from being a normal form
field. If this flag is set the text occupies any remaining space within the parent
window.

WOF_NON_SELECTABLE—Prevents the text object from being selected. If this
flag is set, the user will not be able to edit or position on the text information.

WOF_UNANSWERED—Sets the initial status of the text field to be “unanswered.”
An unanswered text field is displayed as blank space on the screen.

WOF_VIEW_ONLY—Prevents the text object from being edited. If this flag is set,
the end user will not be able to edit the text information but will be able to browse
through the text field.

WOAF_NON_CURRENT—The text object cannot be made current. If this flag is

set, users will not be able to select the text object from the keyboard nor with the
mouse.

280 Zinc Application Framework — Programming Techniques

DATE

A date field displays and collects date information. Selecting “Date” causes a date field
to appear that contains the current date, similar to the figure below:

4-10-1992

To modify the date, call its editor. The following window will appear:

date: [10719/1968 | | DTF_SLASH

] DTF_SYSTEM

(] DTF_UPPER_CASE
(] DTF_US_FORMAT
] DTF_ZERO_FILL
---woFlags---

[X] WOF_AUTO_CLEAR
|[] WOF BORDER

range: I

userFunction: l

stringlD: |FIELD_4
helpContext: Iﬂone]

=l

date

Enter in this field the date that you want to appear in the date object. The default format
to which this date will be automatically converted is month-day-year, with spaces being
automatically converted to hyphens (-). (If another flag is set that designates a different
separator for the date, such as DTF_SLASH, spaces will be converted accordingly.)

range

If you want to specify a certain range of acceptable dates, enter in this field the valid date
ranges. For example, if you want to accept only those dates within the 1992 calendar
year, enter the range of ““1-1-92..12-31-92.” If no range is entered, any date will be
accepted.

Chapter 26 — Input Objects 281

userFunction

If you want to have a user function associated with the date object, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table, created by Zinc Designer, can retrieve it.

stringlD

Enter in this field a string that will distinguish the date object from other objects.

helpContext

This field designates the help context to be associated with the date field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the date and requests help. (See the Help Editor section of *“Chapter
30—Utilities Options” for information on creating help contexts.)

flags

The flags that control interpretation and presentation of the date object are listed in the
field on the right side of the edit window. These flags are:

DTF_ALPHA_MONTH—Formats the month to be displayed as an ASCII string
value.

DTF_DASH—Separates each date value with a dash, regardless of the default
country date separator.

DTF_DAY_OF_WEEK—Adds an ASCII string day-of-week value to the date.

DTF_EUROPEAN_FORMAT—Forces the date to be displayed and interpreted in
the European format (i.e., day/month/year), regardless of the default country
information.

DTF_JAPANESE_FORMAT—Forces the date to be displayed and interpreted in

the Japanese format (i.e., year/month/day), regardless of the default country
information.

282 Zinc Application Framework — Programming Techniques

DTF_MILITARY_FORMAT—Forces the date to be displayed and interpreted in
the U.S. Military format (i.e., day/month/year where month is a 3 letter abbreviated
word), regardless of the default country information.

DTF_SHORT_DAY—Adds a shortened day-of-week text to the date.
DTF_SHORT_MONTH—Uses a shortened alphanumeric month in the date.
DTF_SHORT_YEAR—Forces the year to be displayed as a two-digit value.

DTF_SLASH—Separates each date value with a slash, regardless of the default
country date separator.

DTF_SYSTEM—TFills a blank date with the system date. For example, if a blank
ASCII date were entered by the end user and the DTF_SYSTEM flag were set, the
date would be set to the system date.

DTF_UPPER_CASE—Converts the alphanumeric date to upper case.

DTF_US_FORMAT—Forces the date to be displayed and interpreted in the U.S.
format (i.e., month/day/year), regardless of the default country information.

DTF_ZERO_FILL—Forces the year, month and day values to be zero filled when
their values are less than 10.

WOF_AUTO_CLEAR—Automatically clears the date buffer if the end user tabs to
the date field (from another window field) then presses a key (without first having
pressed any movement or editing keys).

WOF_BORDER—Draws a single-line border around the date object in graphics
mode. In text mode, no border is drawn.

WOF_INVALID—Sets the initial status of the date field to be “invalid.” An
invalid date fits in the absolute range determined by the object type (i.e., “1-1-
100..12-31-32767"") but does not fulfill all the requirements specified by the program.
For example, a date may initially be set to 3-12-90 but the final date, edited by the
end user, must be in the range ““12-1-90..12-31-90.” The initial date in this example
fits the absolute requirements of a date class object but does not fit into the specified
range.

WOF_JUSTIFY_CENTER—Center-justifies the date information within the date
field.

Chapter 26 — Input Objects 283

WOF_JUSTIFY_RIGHT—Right-justifies the date information within the date field.

WOF_MINICELL—Uses mini-cell values to determine the date object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the date object to not be a form field. If
this flag is set the date object will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the date object from being selected. If this
flag is set, the user will not be able to edit or position on the date information.

WOF_UNANSWERED—Sets the initial status of the date field to be *‘unan-
swered.” An unanswered date field is displayed as blank space on the screen.

WOF_VIEW_ONLY—Prevents the date object from being edited. If this flag is set,
the end user will not be able to edit a date object’s information but will be able to
browse through the information.

WOAF_NON_CURRENT—The date object cannot be made current. If this flag is

set, users will not be able to select the date object from the keyboard nor with the
mouse.

TIME

A time field displays and collects time information. Selecting “Time” causes a time field
to appear that contains the current time, similar to the figure below:

10:07 p.m.

To modify the time object, call its editor. The following window will appear:

284 Zinc Application Framework — Programming Techniques

time: [12:28 p.m.

—| [] TMF_SYSTEM
[] TMF_TWELYE_HOUR

range:
= | B TMF_TWENTY_FOUR_HOUR
userFunction: |] |0 TME_uppER_case
[] TMF_ZERO_FILL
stringID: [FIELD_5 s [eege -

[X] WwOF_AUTO_CLEAR
<] WOF BORDER

helpContext: I [(None)

time

Enter in this field the time that you want to appear in the time object. The default format
to which this time will be automatically converted is hour:minutes a.m. or hour:minutes
p-m... A space between numbers will be interpreted as a colon, and necessary periods (for
“am.” and “p.m.”) are automatically inserted. Since any hour value under 12 is
interpreted as morning, it is necessary to enter “pm” if the hour value is meant to be in
post-meridian time and you are using a 12-hour clock. If you enter the time value accor-
ding to a 24-hour clock, there is no need to enter “a.m.” or “p.m.”—the object will
interpret and convert the value into the default format.

range

If you want to specify a certain range of acceptable time values, enter in this field the
valid time ranges. For example, if you want to accept only those times whose values fall
in post-meridian time, enter the range of ““12:00pm..11:59:59pm.” If no range is entered,
any time value will be accepted.

userFunction

If you want to have a user function associated with the time object, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table, created by Zinc Designer, can retrieve it.

Chapter 26 — Input Objects 285

stringID

Enter in this field a string that will distinguish the time object from other objects.

helpContext

This field designates the help context to be associated with the time field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the time and requests help. (See the Help Editor section of *“Chapter
30—Utilities Options” for information on creating help contexts.)

flags

The flags that control interpretation, presentation and operation of the time information
are listed in the field on the right side of the edit window. These flags are:

TMF_COLON_SEPARATOR—Separates each time value with a colon.

TMF_HUNDREDTHS—Includes the hundredths value in the time. (By default the
hundredths value is not included.)

TMF_LOWER_CASE—Converts the time to lower-case.

TMF_NO_HOURS—Does not display nor interpret an hour value for the UI_TIME
object.

TMF_NO_MINUTES—Does not display nor interpret a minute value for the
UIW_TIME class object.

TMF_NO_SEPARATOR—Does not use any separator characters to delimit the time
values.

TMF_SECONDS—Includes the seconds value in the time. (By default the seconds
value is not included.)

TMF_SYSTEM—Fills a blank time with the system time. For example, if a blank
ASCII time value were entered by the end user and the TMF_SYSTEM flag were set,
the time would be set to the current system time.

TMF_TWELVE_HOUR—Forces the time to be displayed and interpreted using a
12 hour clock, regardless of the default country information.

286 Zinc Application Framework — Programming Techniques

TMF_TWENTY_FOUR_HOUR—Forces the time to be displayed and interpreted
using a 24 hour clock, regardless of the default country information.

TMF_UPPER_CASE—Converts the time to upper case.

TMF_ZERO_FILL—Forces the hour, minute and second values to be zero filled
when their values are less than 10.

WOF_AUTO_CLEAR—Automatically clears the time buffer if the end user tabs to
the time field (from another window field) and then presses a key (without first
having pressed any movement or editing keys).

WOF_BORDER—Draws a single-line border around the time object in graphics
mode. In text mode, no border is drawn.

WOF_INVALID—Sets the initial status of the time field to be ‘““invalid.” An
invalid time fits in the absolute range determined by the object type (e.g, “12:00pm..-
11:59:59pm™) but does not fulfill all the requirements specified by the program. For
example, a time field may initially be set to 8 :15am, but the final time, edited by
the end user, must be in the range ““12:00pm..11:59:59pm.” The initial time in this
example fits the absolute requirements of a time class object but does not fit into the
specified range.

WOF_JUSTIFY_CENTER—Center-justifies the time information within the time
field.

WOF_JUSTIFY_RIGHT—Right-justifies the time information within the time field.

WOF_MINICELL—Uses mini-cell values to determine the time object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the time object to not be a form field. If
this flag is set the time object will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the time object from being selected. If this
flag is set, the user will not be able to edit or position on the time information.

WOF_UNANSWERED—Sets the initial status of the time field to be “un-
answered.” An unanswered time field is displayed as blank space on the screen.

Chapter 26 — Input Objects 287

WOF_VIEW_ONLY—Prevents the time field from being modified. This flag will
still allow the time field to become current.

WOAF_NON_CURRENT—The time object cannot be made current. If this flag
is set, users will not be able to select the time object from the keyboard nor with the
mouse.

BIGNUM

A bignum object is used to display and collect numeric information. It can be formatted
in various ways, such as for numbers presented as percentages, currency and credit.
Selecting “Bignum’” causes the following object to appear:

0.00000000

To modify the bignum object, call its editor. The following window will appear:

bignum: [0.00000000 | |---nmFlags---
range: | J [] NMF_COMMAS

| [] NMF_CREDIT

[] NMF_CURRENCY
[] NMF_PERCENT
stringlD: |F|ELD_1 |] NMF_DECIMAL(D)
helpContext: [(None) [] NMF_DECIMAL(1)

userFunction: |

bignum

Enter in this field the number that you want to appear in the bignum field. The number
will be displayed with the number of decimal places designated by the flags you have set.

288 Zinc Application Framework — Programming Techniques

A bignum object can have up to thirty digits to the left of the decimal place and up to
eight digits to the right of the decimal place.

range

If you want to specify a certain range of acceptable bignum values, enter in this field the
valid bignum ranges. For example, if you want to accept only numbers between 100 and
100,000, enter the range of “100..100000.” If no range is entered, any numeric value
will be accepted.

userFunction

If you want to have a user function associated with the bignum object, enter in this field
the name of the function. This user function must be defined somewhere in your code
so that the user table, created by Zinc Designer, can retrieve it.

stringlD

Enter in this field a string that will distinguish the bignum object from other objects.

helpContext

This field designates the help context to be associated with the bignum field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the bignum field and requests help. (See the Help Editor section of “Chapter
30—Utilities Options™ for information on creating help contexts.)

flags

The flags that control the presentation and operation of the bignum information are listed
in the field on the right side of the edit window. These flags are:

NMF_CURRENCY—Displays the number with the country-specific currency
symbol.

NMF_CREDIT—Displays the number with the ‘(" and)’ credit symbols whenever
the number is negative.

Chapter 26 — Input Objects 289

290

NMF_COMMAS—Displays the number with commas.

NMF_DECIMAL(decimal)—Displays the number with a decimal point at a fixed
location. decimal is the number of decimal places to be displayed. Valid decimal
values range from O to 8.

NMF_PERCENT—Displays the number with a percentage symbol.

WOF_AUTO_CLEAR—Automatically clears the numeric buffer if the end user tabs
to the bignum field (from another window field) then presses a key (without first
having pressed any movement or editing keys).

WOF_BORDER—Draws a single-line border around the bignum object in graphics
mode. In text mode, no border is drawn.

WOF _INVALID—Sets the initial status of the bignum field to be “invalid.”
Invalid numbers fit in the absolute range determined by the object type but do not
fulfill all the requirements specified by the program. For example, a bignum may
initially be set to 200, but the final number, edited by the end user, must be in the
range “10..100.” The initial number in this example fits the absolute requirements
of a bignum class object but does not fit into the specified range.

WOF_JUSTIFY_CENTER—Center-justifies the numeric information associated
with the bignum object.

WOF_JUSTIFY_RIGHT—Right-justifies the numeric information associated with
the bignum object.

WOF_MINICELL—Uses mini-cell values to determine the bignum object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the bignum field to not be a form field.
If this flag is set the bignum field will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the bignum object from being selected. If
this flag is set, the user will not be able to edit or position on the bignum
information.

WOF_UNANSWERED—Sets the initial status of the bignum field to be ‘“unan-
swered.” An unanswered bignum field is displayed as blank space on the screen.

Zinc Application Framework — Programming Techniques

WOF_VIEW_ONLY—Prevents the bignum object from being edited. However, the
bignum object may become current.

WOAF_NON_CURRENT—The bignum object cannot be made current. If this flag
is set, the bignum object cannot be selected from the keyboard nor with the mouse.

INTEGER

An integer object is used to present and collect numeric information for integers. It
cannot be formatted. (The bignum object must be used for numbers requiring special
formatting capabilities.) Selecting “Integer” causes the following object to appear:

0

To modify the integer object, call its editor. The following window appears:

[X] WwOF_AUTO_CLEAR

[] wOF_BORDER
userFunction: L j [] WOF_INVALID

[] wOF_JUSTIFY_CENTER
[] wOF_JUSTIFY_RIGHT
[J wOF_MINICELL

integer: Iq I ---woFlags——
|

range: I

stringlD: |FIELD_7]
helpContext: I[None] e

integer

Enter in this field the integer that you want to appear in the integer field.

Chapter 26 — Input Objects 291

range

If you want to specify a certain range of acceptable integer values, enter in this field the
valid integer ranges. For example, if you want to accept only numbers between 100 and
10,000, enter the range of “100..10000.” If no range is entered, any integer value will
be accepted.

userFunction

If you want to have a user function associated with the integer object, enter in this field
the name of the function. This user function must be defined somewhere in your code
so that the user table, created by Zinc Designer, can retrieve it.

stringIlD

Enter in this field a string that will distinguish the integer object from other objects.

helpContext

This field designates the help context to be associated with the integer field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the integer field and requests help. (See the Help Editor section of *“Chapter
30—Utilities Options” for information on creating help contexts.)

flags

The flags that control the presentation and operation of the integer information are listed
in the field on the right side of the window. These flags are:

WOF_AUTO_CLEAR—Automatically clears the numeric buffer if the end user tabs
to the integer field (from another window field) then presses a key (without first
having pressed any movement or editing keys).

WOF_BORDER—Draws a single-line border around the integer object in graphics
mode. In text mode, no border is drawn.

WOF_INVALID—Sets the initial status of the integer field to be “invalid.” Invalid
numbers fit in the absolute range determined by the object type but do not fulfill all
the requirements specified by the program. For example, an integer may initially be

292 Zinc Application Framework — Programming Techniques

set to 200, but the final number, edited by the end user, must be in the range
“10..100.” The initial number in this example fits the absolute requirements of an
integer class object but does not fit into the specified range.

WOF_JUSTIFY_CENTER—Center-justifies the numeric information associated
with the integer object.

WOF_JUSTIFY_RIGHT—Right-justifies the numeric information associated with
the integer object.

WOF_MINICELL—Uses mini-cell values to determine the integer object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the integer field to not be a form field. If
this flag is set the integer field will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the integer object from being selected. If
this flag is set, the user will not be able to edit or position on the integer information.

WOF_UNANSWERED—Sets the initial status of the integer field to be “‘unan-
swered.” An unanswered integer field is displayed as blank space on the screen.

WOF_VIEW_ONLY—Prevents the integer object from being edited. However, the
integer object may become current.

WOAF_NON_CURRENT—The integer field cannot be made current. If this flag
is set, users will not be able to select the integer object from the keyboard nor with
the mouse.

REAL

A real number object is used to present and collect floating-point numeric information.
Decimal numbers will be displayed using decimal notation. When the decimal strings are
too large for the input field, they are automatically converted to scientific notation.
Selecting “Real” causes the following object to appear:

Chapter 26 — Input Objects 293

To modify the real number object, call its editor. The following window appears:

---woFlags---

WOF_AUTO_CLEAR

WOF_BORDER

userFunction: I 4] [] WOF_INVALID

[] wOF_JUSTIFY_CENTER

| [] wOF_JUSTIFY_RIGHT
O WOF_MINICELL

real: IIIT

|
range: [l

stringlD: [FIELD_8
helpContext: |[None]

real

Enter in this field the number that you want to appear in the real number field.

range

If you want to specify a certain range of acceptable real number values, enter in this field
the valid real number ranges. For example, if you want to accept only numbers between
100 and 100,000, enter the range of *“100..100000.” If no range is entered, any real
number value will be accepted.

userFunction

If you want to have a user function associated with the real number object, enter in this
field the name of the function. This user function must be defined somewhere in your
code so that the user table, created by Zinc Designer, can retrieve it.

294 Zinc Application Framework — Programming Techniques

stringlD

Enter in this field a string that will distinguish the real object from other objects.

helpContext

This field designates the help context to be associated with the real number field. Select
the combo box button to view a list of the available help contexts. If you select one of
the help contexts listed, the help message of that context will be displayed whenever the
user positions on the real number field and requests help. (See the Help Editor section
of “Chapter 30—Utilities Options™ for information on creating help contexts.)

flags

The flags that control the presentation and operation of the real number information are
listed in the field on the right side of the window. These flags are:

WOF_AUTO_CLEAR—Automatically clears the numeric buffer if the end user tabs
to the real number field (from another window field) then presses a key (without first
having pressed any movement or editing keys).

WOF_BORDER—Draws a single-line border around the real number object in
graphics mode. In text mode, no border is drawn.

WOF_INVALID—Sets the initial status of the real number field to be “invalid.”
Invalid numbers fit in the absolute range determined by the object type but do not
fulfill all the requirements specified by the program. For example, a real number
may initially be set to 200, but the final number, edited by the end user, must be in
the range “10..100.” The initial number in this example fits the absolute require-
ments of a real number class object but does not fit into the specified range.

WOF_JUSTIFY_CENTER—Center-justifies the numeric information associated
with the real object.

WOF_JUSTIFY_RIGHT—Right-justifies the numeric information associated with
the real object.

WOF_MINICELL—Uses mini-cell values to determine the real number object’s

position. Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for
more precise positioning of objects and is valid in graphics modes only.

Chapter 26 — Input Objects 295

296

WOF _NON_FIELD REGION—Causes the real number field to not be a form field.
If this flag is set the real number field will occupy all the remaining space of its
parent window.

WOF_NON_SELECTABLE—Prevents the real number object from being selected.
If this flag is set, the user will not be able to edit or position on the real number
information.

WOF_UNANSWERED—Sets the initial status of the real number field to be
“unanswered.” An unanswered real number field is displayed as blank space on the
screen.

WOF_VIEW_ONLY—Prevents the real number object from being edited. However,
the real number object may become current.

WOAF_NON_CURRENT—The real number field cannot be made current. If this

flag is set, users will not be able to select the real number field from the keyboard
nor with the mouse.

Zinc Application Framework — Programming Techniques

CHAPTER 27 - CONTROL OBJECTS

The control category includes objects that are used to control the various operations of an
application, its windows and window objects. Selecting the “Control” option causes the
following associated menu to appear:

Utilities Help

Radio Button
Check Box
Vi-List
Hz-List
Combo Box

¥t-Scroll Bar
Hz-Scroll Bar

Child Window

BUTTON

A button is used to provide a selectable option that relates to a window. Selecting
“Button” causes the following object to appear:

To modify the button, call its editor. The following window will appear:

Chapter 27 — Control Objects 297

|] BTF_DOWN_CLICK

. : BTF_NO_TOGGLE
value: |0 | [BTF_NO_3D
userFunction: |] BTF_RADIO_BUTTON
bitmap: l (None) [] BTF_REPEAT

(] BTF_SEND_MESSAGE
---woFlags---
stringlD: [FIELD_1

[] wOF_BORDER
] WOF_JUSTIFY_CENTER

helpContext: I [None)

text

Enter in this field text exactly as you want it to appear on the button. It will be
automatically centered vertically. If the text string is longer than the length of the button,
the button must be sized in order to display the entire text.

value

This field allows you to enter a value that serves as a unique identification for a button.
For example, you could associate the value O with an “OK” button and a value of 1 with
a “Cancel” button. This allows you to define one user-function that looks at the button
values, instead of several user-functions that are tied to each button object. If the BTF_-
SEND_MESSAGE flag is set, the value must be an event type.

userFunction

If you want to have a user function associated with the button, enter in this field the name
of the function. This user function must be defined somewhere in your code so that the
user table, created by Zinc Designer, can retrieve it.

298 Zinc Application Framework — Programming Techniques

bitmap

This field designates the bitmap image to be associated with the button. Select the combo
box button to view a list of the available bitmaps. If you select one of the bitmaps listed,
it will be displayed on the button. (See the Image Editor section of “Chapter
30—Utilities Options” for information on creating bitmap images.)

stringlD

Enter in this field a string that will distinguish the button object from other objects.

helpContext

This field designates the help context to be associated with the button. Select the combo
box button to view a list of the available help contexts. If you select one of the context
contexts listed, the help message of that context will be displayed whenever the user
positions on the button and requests help. (See the Help Editor section of “Chapter
30—Help Options” for information on creating help contexts.)

flags

The flags that control the presentation and operation of the button are listed in the field
on the right half of the window. The flags are:

BTF_AUTO_SIZE—Automatically computes the run-time height of the button. If
the application is running in text mode, the height is set to 1. If the application is
running in graphics mode, the button is approximately 120% of the default cell
height.

BTF_CHECK_BOX—Creates a check box that can be toggled when selected. The
WOS_SELECTED flag is set when the button is selected. In graphics mode, a
square box is drawn that is marked with an ‘X’ when selected. In text mode the
check box is represented by ‘[]” when it is not selected and ‘[XT when it is selected.
(NOTE: A check box can also be created by selecting Object | Control | Check Box
or by selecting it from the object bar. For more information on check boxes, see the
Check Box section in this chapter.)

BTF_DOUBLE_CLICK—Completes the button action when the button has been

selected twice within a period of time specified by UI_ WINDOW_OBJECT::-
doubleClickRate.

Chapter 27 — Control Objects 299

300

BTF_DOWN_CLICK—Completes the button action on a button down-click, rather
than on a down-click and release action.

BTF_NO_TOGGLE—Does not toggle the button’s WOS_SELECTED status flag.
If this flag is set, the WOS_SELECTED window object status flag is not set when
the button is selected.

BTF_NO_3D—Causes the button to be displayed without a 3D appearance.

BTF_RADIO_BUTTON—Causes the button to appear and function as a radio
button. In graphics mode, a graphical radio button is drawn, while in text mode, it
appears as ‘(*)’ when selected or ‘()’ when not selected. All of the radio buttons
in a group, list box, or window are considered to be members of the same group.
Only one radio button in a group may be selected at any one time. (NOTE: A radio
button can also be created by selecting Object | Control | Radio Button or by selecting
it from the object bar. For more information on radio buttons, see the Radio Button
section in this chapter.)

BTF_REPEAT—Causes the button to be re-selected (i.e., the user function is called)
if it remains selected for a period of time greater than that specified by UI -
WINDOW_OBJECT: :repeatRate.

BTF_SEND_MESSAGE—Causes the event associated with the button’s value to be
created and put on the event queue when the button is selected. Any temporary
windows are removed from the display when this message is sent.

WOF_BORDER—Draws a single-line border around the object in graphics mode.
In text mode, it causes a shadow to be displayed on the button.

WOF_JUSTIFY_CENTER—Center-justifies the text within the button.
WOF_JUSTIFY_RIGHT—Right-justifies the text within the button.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell coordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the button object to not be a form field.
If this flag is set the button object will occupy all of the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the button object from being selected. If
this flag is set, the user will be able to see, but not select, the button.

Zinc Application Framework — Programming Techniques

WOAF_NON_CURRENT—Prevents the button object from being made current.
However, clicking the button with the mouse or pressing the button’s hotkey will call
the object’s user function.

RADIO BUTTON

A radio button is a type of button that displays not only text, but also an indicator that
toggles. All of the radio buttons in a group, list box or window are considered to be
members of the same group. Only one radio button in a group may be selected at any
one time. (NOTE: The radio button’s parent must not have the WNF_SELECT_-
MULTIPLE flag set or multiple radio buttons would be able to be displayed in the ‘on’
state.) Selecting “Radio Button” causes the following object to appear (in graphics
mode):

O Radio-button

In text mode, the radio button appears as ‘(*)’ when selected or ‘()’ when not selected.

NOTE: To have multiple radio button groups on the same window use the group object.
(See the Group section of ‘“‘Chapter 29—Static Options” for information on creating

groups.)

To modify the radio button object, call its editor. The following window will appear:

---btFlags---

[] BTF_AUTOD_SIZE

[] BTF_CHECK_BOX
[J BTF_DOUBLE_CLICK

text: [Radio-button

value: IlL

userFunction: L

bitmap: L[""“e]] BTF_DOWN_CLICK
[J BTF_ND_TOGGLE
] BTF_NO_3D

stringlD: [FIELD_1 | |= 81F_RADIO_BUTTON

helpContext: |[None] [] BTF_REPEAT

Chapter 27 — Control Objects 301

NOTE: The editor for the radio button is actually the editor for the standard button object
but with the BTF_RADIO_BUTTON flag set. If this flag is toggled, or if the
BTF_CHECK_BOX flag is selected, the button will no longer be displayed as a radio
button.

text

Enter in this field text exactly as you want it to appear on the radio button. It will be
automatically centered vertically. If the text string is longer than the length of the button,
the button must be sized in order to display the entire text.

value

This field allows you to enter in a value that serves as a unique identification for a radio
button. For example, you could associate the value 0 with an “OK” button and a value
of 1 with a “Cancel” button. This allows you to define one user-function that looks at
the button values, instead of several user-functions that are tied to each button object. If
the BTF_SEND_MESSAGE flag is set, the value must be an event type.

userFunction

If you want to have a user function associated with the radio button, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table, created by Zinc Designer, can retrieve it.

bitmap

This field designates the bitmap image to be associated with the button. (NOTE: Do not
attach a bitmap to a radio button since radio buttons by nature do not have bitmaps.)

stringID

Enter in this field a string that will distinguish the radio button object from other objects.

helpContext

This field designates the help context to be associated with the radio button. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user

302 Zinc Application Framework — Programming Techniques

positions on the radio button and requests help. (See the Help Editor section of “Chapter
30—Help Options” for information on creating help contexts.)

flags

The flags that control the presentation and operation of the radio button are listed in the
field on the right half of the window. The flags are:

BTF_AUTO_SIZE—Automatically computes the run-time height of the radio button.
If the application is running in text mode, the height is set to 1. If the application is
running in graphics mode, the radio button is approximately 120% of the default cell
height.

BTF_CHECK_BOX—Creates a check box, instead of a radio button, that can be
toggled when selected. The WOS_SELECTED flag is set when the button is
selected. In graphics mode, a square box is drawn that is marked with an ‘X’ when
selected. In text mode the check box is represented by ‘[]* when it is not selected
and ‘[X] when it is selected. (NOTE: A check box can also be created by selecting
Object | Control | Check Box or by selecting it from the object bar. For more
information on check boxes, see the Check Box section in this chapter.)

BTF_DOUBLE_CLICK—Completes the radio button action when the button has
been selected twice within a period of time specified by UI_ WINDOW_OBJECT: :-
doubleClickRate.

BTF_DOWN_CLICK—Completes the radio button action on a button down-click,
rather than on a down-click and release action.

BTF_NO_TOGGLE—Causes the radio button to not be toggled when it is selected.
BTF_NO_3D—Causes the radio button to be displayed without a 3D appearance.

BTF_RADIO_BUTTON—Causes the button to appear and function as a radio
button. In graphics mode, a graphical radio button is drawn, while in text mode, it
appears as ‘(®)’ when selected or ‘()’ when not selected. All of the radio buttons
in a group, list box or window are considered to be members of the same group.
Only one radio button in a group may be selected at any one time. This flag is set
by default. If it is toggled to not be selected, the radio button becomes a regular
button.

Chapter 27 — Control Objects 303

BTF_REPEAT—Causes the radio button to be re-selected (i.e., the user function is
called) if it remains selected for a period of time greater than that specified by UI_-
WINDOW_OBJECT: :repeatRate.

BTF_SEND_MESSAGE—Causes the event associated with the radio button’s value
to be created and put on the event queue when the radio button is selected. Any
temporary windows are removed from the display when this message is sent.

WOF_BORDER—Draws a single-line border around the object. In text mode,
setting this setting is displayed as a shadow on the radio button.

WOF_JUSTIFY_CENTER—Center-justifies the text within the radio button.
WOF_JUSTIFY_RIGHT—Right-justifies the text within the radio button.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell coordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the radio button object to not be a form
field. If this flag is set the radio button object will occupy all of the remaining space
of its parent window.

WOF_NON_SELECTABLE—Prevents the radio button object from being selected.
If this flag is set, the user will be able to see, but not select, the radio button.

, WOAF_NON_CURRENT—Prevents the radio button object from being made
| current. However, clicking the radio button with the mouse or pressing the radio
button’s hotkey will call the object’s user function.

CHECK BOX

A check box is a type of button that displays not only text, but also an indicator that
toggles. Any number of check boxes in a group may be selected at one time (the check
box’s parent should have the WNF_SELECT_MULTIPLE flag set). Selecting “Check
box™ causes the following object to appear (in graphics mode):

|:| Check-box

In text mode the check box is represented by ‘[]’ when it is not selected and ‘[X]’ when
it is selected.

304 Zinc Application Framework — Programming Techniques

To modify the check box object, call its editor. The following window will appear:

text: ---btFlags---
] BTF_AUTOD_SIZE
[BTF_CHECK_BOX

[] BTF_DOUBLE_CLICK

value: l 0

userFunction: l

bitmap: Iﬂ'““"' (] BTF_DOWN_CLICK
] BTF_NO_TOGGLE
(X BTF_NO_3D
R [FIELD_1 | |01 8TF_RADIO_BUTTON
helpContext: [(None) _[# |OsTF_REPEAT

NOTE: The editor for the check box is actually the editor for the standard button object
but with the BTF_CHECK_BOX flag set. If this flag is toggled, or if the BTF_RADIO_-
BUTTON flag is selected, the button will no longer be displayed as a check box.

text

Enter in this field text exactly as you want it to appear on the check box object. It will
be automatically centered vertically. If the text string is longer than the length of the
button, the button must be sized in order to display the entire text.

value

This field allows you to enter in a value that serves as a unique identification for a check
box object. For example, you could associate the value 0 with an “OK” button and a
value of 1 with a “Cancel” button. This allows you to define one user-function that
looks at the button values, instead of several user-functions that are tied to each button
object. If the BTF_SEND_MESSAGE flag is set, the value must be an event type.

Chapter 27 — Control Objects 305

userFunction

If you want to have a user function associated with the check box, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table, created by Zinc Designer, can retrieve it.

bitmap

This field designates the bitmap image to be associated with the button. (NOTE: Do not
attach a bitmap to a check box since check boxes by nature do not have bitmaps.)

stringIlD

Enter in this field a string that will distinguish the check box object from other objects.

helpContext

This field designates the help context to be associated with the check box button. Select
the combo box button to view a list of the available help contexts. If you select one of
the help contexts listed, the help message of that context will be displayed whenever the
user positions on the check box and requests help. (See the Help Editor section of
“Chapter 30—Help Options” for information on creating help contexts.)

flags

The flags that control the presentation and operation of the check box button are listed in
the field on the right half of the window. The flags are:

BTF_AUTO_SIZE—Automatically computes the run-time height of the check box
button. If the application is running in text mode, the height is set to 1. If the
application is running in graphics mode, the check box button is approximately 120%
of the default cell height.

BTF_CHECK_BOX—Creates a check box that can be toggled when selected. The
WOS_SELECTED flag is set when the button is selected. In graphics mode, a
square box is drawn that is marked with an ‘X’ when selected. In text mode the
check box is represented by ‘[]” when it is not selected and ‘[X]* when it is selected.
This flag is set by default. If it is toggled to not be selected, the check box becomes
a regular button.

306 Zinc Application Framework — Programming Techniques

BTF_DOUBLE_CLICK—Completes the check box action when the button has been
selected twice within a period of time specified by UI_WINDOW _OBJECT::-
doubleClickRate.

BTF_DOWN_CLICK—Completes the check box action on a button down-click,
rather than on a down-click and release action.

BTF_NO_TOGGLE—Causes the check box to not be toggled when it is selected.

BTF_NO_3D—Causes the check box button to be displayed without a 3D
appearance.

BTF_RADIO_BUTTON—Causes the button to appear and function as a radio
button, instead of a normal button. In graphics mode, a graphical radio button is
drawn, while in text mode, it appears as ‘(*)’ when selected or ‘(') when not
selected. All of the radio buttons in a group, list box or window are considered to
be members of the same group. Only one radio button in a group may be selected
at any one time. (NOTE: A radio button can also be created by selecting Object |
Control | Radio Button or by selecting it from the object bar. (See the Radio Button
section of this chapter for more information on radio buttons.)

BTF_REPEAT—Causes the check box to be re-selected (i.e., the user function is
called) if it remains selected for a period of time greater than that specified by UI_-
WINDOW_OBJECT: :repeatRate.

BTF_SEND_MESSAGE—Causes the event associated with the check box’s value
to be created and put on the event queue when the check box is selected. Any

temporary windows are removed from the display when this message is sent.

WOF_BORDER-Draws a single-line border around the object. In text mode,
setting this setting is displayed as a shadow on the check box button.

WOF_JUSTIFY_CENTER—Center-justifies the text within the check box button.
WOF_JUSTIFY_RIGHT-Right-justifies the text within the check box button.
WOF_MINICELL—Uses mini-cell values to determine the object’s position.

Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

Chapter 27 — Control Objects 307

WOF_NON_FIELD_REGION—Causes the check box object to not be a form field.
If this flag is set the check box object will occupy all of the remaining space of its
parent window.

WOF_NON_SELECTABLE—Prevents the check box object from being selected.
If this flag is set, the user will be able to see, but not select, the check box.

WOAF_NON_CURRENT—Prevents the check box object from being made current.
However, clicking the check box with the mouse or pressing the check box’s hotkey
will call the object’s user function.

VERTICAL LIST

A vertical list is used to display items in a single-column fashion. The list is only
scrollable vertically. Selecting “Vt-List” causes the following object to appear:

Notice that the list is initially empty. A vertical list is actually a framework to which
other objects can be attached. For example, a list of strings could be added to a vertical
list by repeatedly selecting the string object from the menu or the toolbar and placing the
string within the list. These objects will be aligned in a single-column fashion
automatically. When more items are added to the list than can be displayed, a vertical
scroll bar is automatically added.

To modify the vertical list object, call its editor. The following window will appear:

308 Zinc Application Framework — Programming Techniques

compare: || | ---options---

[vertical Scroll Bar
---wnFlags---

stiinglD: |FIELD_2 | |0 wNF_auTo_seLeCT
helpContext: [(None) (] WNF_AUTO_SORT
[] WNF_BITMAP_CHILDREN
[] WNF_CONTINUE_SELECT
B WNF_NO_WRAP

[] WNF_SELECT_MULTIPLE
---woFlags---

FAsunr nonncn

DObjects:

compare

If you want to have a compare function associated with the vertical list, enter in this field
the name of the function. A compare function determines the order of list items and must
be defined somewhere in your code so that the user table, created by Zinc Designer, can
retrieve it. (For more information on compare functions for vertical lists, refer to the
UI_LIST and UIW_VT_LIST chapters of the Programmer’s Reference.)

stringlD

Enter in this field a string that will distinguish the vertical list object from other objects.

helpContext

This field designates the help context to be associated with the vertical list. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the vertical list and requests help. (See the Help Editor section of “Chapter
30—Help Options” for information on creating help contexts.)

Chapter 27 — Control Objects 309

objects

This field displays the objects, listed by their string identifications, that are currently
attached to the vertical list. To delete an object from the vertical list, position the cursor
(i.e., highlight bar) on the desired object and press <Ctrl+Del>. To re-order the vertical
list objects within the object list, position the cursor (i.e., highlight bar) on the desired
object and press the <Ctrl+T> or <Ctrl+!> keys. Each time <Ctrl+T> is pressed, the
highlighted object will be moved up one space in the object list. Similarly, each time
<Ctrl+!> is pressed, the highlighted object will be moved down one space in the object
list.

options and flags

The options and flags that control the presentation and operation of the vertical list are
listed in the field on the right half of the window. The flags are:

Vertical Scroll Bar—Places a vertical scroll bar inside the right border of the text
field.

WNF_AUTO_SORT—Assigns a compare function to alphabetize the strings within
the list. If this flag is used, the compare function field should be blank.

WNF_BITMAP_CHILDREN—Used to denote that some of the list’s sub objects
contain bitmaps. This flag must be set if the list will contain non-string objects.

WNF_NO_WRAP—Causes the list to not wrap when scrolling. By default, if the
highlight is positioned on the last item in the list and the down key is pressed, the list
will wrap and position itself on the first item in the list. This flag disables this
feature.

WNF_SELECT_MULTIPLE—Allows multiple items within the vertical list to be
selected.

WOF_BORDER—In graphics mode, this flag draws a single line border around the
vertical list. In text mode, no border is drawn.

WOF_MINICELL—Uses mini-cell values to determine the object’s position.

Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

310 Zinc Application Framework — Programming Techniques

WOF_NON_FIELD_REGION—Causes the vertical list object to not be a form
field. If this flag is set the vertical list object will occupy all of the remaining space
of its parent window.

WOF_NON_SELECTABLE—Prevents the list from being selected. If this flag is
set, the user will not be able to position on the list.

HORIZONTAL LIST

A horizontal list is used to display related information in a multiple-column fashion within
a window. The list is only scrollable horizontally. Selecting “Hz-List” causes the
following object to appear:

Notice that the list is initially empty. A horizontal list is actually a framework to which
other objects can be attached. For example, a list of strings could be added to a
horizontal list by repeatedly selecting the string object from the menu or the toolbar and
placing it within the list. The items will be aligned automatically in rows and columns.
When more items are added to the list than can be displayed, a horizontal scroll bar is
automatically added.

To modify the horizontal list object, call its editor. The following window will appear:

Chapter 27 — Control Objects 311

cellwidth: ---Options---
cellHeight: l:] [Horizontal Scroll Bar

---wnFlags---
compare:
I [] wNF_AUTO_SELECT

] WNF_AUTO_SORT
stringlD: [FIELD_4 | |[] WNF_BITMAP_CHILDREN
helpContext: |[None] [] WNF_CONTINUE_SELECT
] WNF_NO_WRAP

[] wWNF_SELECT_MULTIPLE
---woFlags---

[] wOF_BORDER

[] WOF_MINICELL

objects:

cellWidth

Enter in this field a number to specify the maximum cell width of a single list item. If
the list is wider than the specified width, it will be displayed with multiple columns. The
default width is “10.”

cellHeight

Enter in this field a number to specify the maximum cell height of a single list item. If
the list is taller than the specified height, it will be displayed with multiple rows. The
default height is ““1.”

compare

If you want to have a compare function associated with the horizontal list, enter in this
field the name of the function. A compare function determines the order of list items and
must be defined somewhere in your code so that the user table, created by Zinc Designer,
can retrieve it. (For more information on compare functions for horizontal lists, refer to
the UL_LIST and UIW_HZ_LIST chapters of the Programmer’s Reference.)

312 Zinc Application Framework — Programming Techniques

stringlD

Enter in this field a string that will distinguish the horizontal list object from other objects.

helpContext

This field designates the help context to be associated with the horizontal list. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the horizontal list and requests help. (See the Help Editor section of
“Chapter 30—Help Options” for information on creating help contexts.)

objects

This field displays the objects, listed by their string identifications, that are currently
attached to the horizontal list. To delete an object from the horizontal list, position the
cursor (i.e., highlight bar) on the desired object and press <Ctrl+Del>. To re-order the
horizontal list objects within the object list, position the cursor (i.e., highlight bar) on the
desired object and press the <Ctrl+T> or <Ctrl+{> keys. Each time <Ctrl+T> is pressed,
the highlighted object will be moved up one space in the object list. Similarly, each time
<Ctrl+> is pressed, the highlighted object will be moved down one space in the object
list.

options and flags

The options and flags that control the presentation and operation of the horizontal list are
listed in the field on the right half of the window. The flags are:

Horizontal Scroll Bar—Places a horizontal scroll bar inside the bottom border of the
text field.

WNF_AUTO_SORT—Assigns a compare function to alphabetize the strings within
the list. If this flag is used, the compare function field should be blank.

WNF_BITMAP_CHILDREN—Used to denote that some of the list’s sub objects
contain bitmaps. This flag must be set if the list will contain non-string objects.

WNF_NO_WRAP—Causes the list to not wrap when scrolling. By default, if the
highlight is positioned on the last item in the list and the arrow key is pressed, the
list will wrap and position itself on the first item in the list. This flag disables this
feature.

Chapter 27 — Control Objects 313

COMBO BOX

314

WNF_SELECT_MULTIPLE—Allows multiple items within the horizontal list to
be selected.

WOF_BORDER—In graphics mode, this flag draws a single line border around the
horizontal list. In text mode, no border is drawn.

WOF_MINICELL—Uses mini-cell values to determine the object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the horizontal list object to not be a form
field. If this flag is set the horizontal list object will occupy all of the remaining
space of its parent window.

WOF _NON_SELECTABLE—Prevents the list from being selected. If this flag is
set, the user will not be able to position on the list.

A combo box is a combination of a string field and a scrollable list box. It is used to
display a list of selectable items. When one of the items is selected, it appears in the
string field. Selecting “‘Combo Box™ causes the following object to appear:

The scrollable list is displayed when the button to the right of the string field is selected.
When one of the items of that list is selected, it is copied into the string field and the list
box disappears. If the string field is editable, the user can enter text and the item in the
list that most closely matches the characters typed will be highlighted. The user can then
select the item to copy it back into the string field.

Objects are added to the combo box’s list by selecting them from the menu or object bar
and placing them on the combo box object. By default, they will be automatically aligned

in a single column in the order in which they were created.

To modify the combo box object, call its editor. The following window will appear:

Zinc Application Framework — Programming Techniques

compare: l] ---options-—

height (cells): D [Vertical Scroll Bar
---wnFlags---

[J WNF_AUTO_SORT

[] WNF_BITMAP_CHILDREN
[] WNF_NO_WRAP

objects: ---woFlags---

[] WOF_AUTO_CLEAR

[] woF_BORDER

[] WOF_JUSTIFY_CENTER

stringlD: ELD_S |

helpContext: | [None)

compare

If you want to have a compare function associated with the combo box, enter in this field
the name of the function. A compare function determines the order of list items and must
be defined somewhere in your code so that the user table, created by Zinc Designer, can
retrieve it. (For more information on compare functions for combo boxes, refer to the
UL_LIST and UIW_COMBO_BOX chapters of the Programmer’s Reference.)

stringiD

Enter in this field a string that will distinguish the combo box object from other objects.

helpContext

This field designates the help context to be associated with the combo box. Select the
help context field’s combo box button to view a list of the available help contexts. If you
select one of the help contexts listed, the help message of that context will be displayed
whenever the user positions on the combo box and requests help. (See the Help Editor
section of “Chapter 30—Help Options™ for information on creating help contexts.)

Chapter 27 — Control Objects 315

objects

This field displays the objects, listed by their string identifications, that are currently
attached to the combo box. To delete an object from the combo box, position the cursor
(i.e., highlight bar) on the desired object and press <Ctrl+Del>. To re-order the combo
box objects within the object list, position the cursor (i.e., highlight bar) on the desired
object and press the <Ctrl+T> or <Ctrl+l> keys. Each time <Ctrl+T> is pressed, the
highlighted object will be moved up one space in the object list. Similarly, each time
<Ctrl+!> is pressed, the highlighted object will be moved down one space in the object
list.

options and flags

316

The flags that control the presentation and operation of the combo box are listed in the
field on the right half of the window. The flags are:

Vertical Scroll Bar—Places a vertical scroll bar inside the right border of the combo
box list field.

WNF_AUTO_SORT—Assigns a compare function to alphabetize the strings within
the list. If this flag is used, the compare function field should be blank.

WNF_BITMAP_CHILDREN—Should be set when items other than strings are
added to the combo box.

WNF_NO_WRAP—Causes the combo box list to not wrap when scrolling. By
default, if the highlight is positioned on the last item in the combo box list and the
arrow key is pressed, the combo box list will wrap and position itself on the first item
in the list. This flag disables this feature.

WOF_AUTO_CLEAR—Automatically clears the edit buffer if the end-user tabs to
the combo box (from another window field) and presses a non-movement key.

WOF_BORDER—Draws a border around the combo box object. In graphics mode,
setting this option draws a single-pixel border around the object. In text mode, no
border is drawn.

WOF_JUSTIFY_CENTER—Center-justifies the string associated with the combo
box’s string field.

WOF_JUSTIFY_RIGHT—Right-justifies the string associated with the combo box’s
string field.

Zinc Application Framework — Programming Techniques

WOF_MINICELL—Uses mini-cell values to determine the object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the combo box object to not be a form
field. If this flag is set the combo box object will occupy all of the remaining space
of its parent window.

WOF_NON_SELECTABLE—Prevents the combo box object from being selected.
If this flag is set, the user will be able to see, but not select, the combo box.

WOF_UNANSWERED—Sets the initial status of the combo box to be “unanswer-
ed,” which displays the combo box’s string field as blank space on the screen.

WOF_VIEW_ONLY—Prevents the combo box from being edited. If this flag is set,
the end-user will not be able to edit a combo box’s information but will be able to
browse through the information.

WOAF_NON_CURRENT—Prevents the combo box object from being made
current.

VERTICAL SCROLL BAR

A vertical scroll bar is most often used to move vertically through information in an
associated window, vertical list or text field so that additional data which is hidden outside
of the displayed portion can be viewed. The “Vt-Scroll Bar” option, however, is not
designed for such use. Instead, creating a vertical scroll bar directly from the menu (or
object bar) causes it to be added to the current resource, independent of any other object.
For example, such a scroll bar could be used as a volume control for an application.
Selecting *“Vt-Scroll Bar™ causes the following object to appear:

Chapter 27 — Control Objects 317

NOTE: To associate a vertical scroll bar with a window, a text field or a vertical list,
simply select the vertical scroll bar option or flag available in the editor for each of these

objects.

To modify the scroll bar, call its editor. The following window will appear:

stinglD: [FIELD_5| | [-sbFlags—

|[X SBF_VERTICAL
[] SBF_HORIZONTAL
---wofFlags---
WOF_BORDER
[] WOF_MINICELL

NOTE: The editor for the vertical scroll bar is actually an editor for a generic scroll bar
object but with the SBF_VERTICAL flag set. If this flag is toggled off, or if another
SBF flag is set, the scroll bar will no longer be displayed as a vertical one.

flags

The flags that control the presentation and operation of the vertical scroll bar are listed
in the right field of the window. The flags are:

318 Zinc Application Framework — Programming Techniques

SBF_HORIZONTAL—Defines the scroll bar object to be a horizontal scroll bar.
SBF_VERTICAL—Defines the scroll bar object to be a vertical scroll bar.
WOF_BORDER—Draws a single line border around the scroll bar object.

WOF_MINICELL—Uses mini-cell values to determine the object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the vertical scroll bar object to not be a
form field. If this flag is set the vertical scroll bar object will occupy all of the right-
most space of its parent window.

WOF_NON_SELECTABLE—Prevents the vertical scroll bar from being selected.
If this flag is set, the user will not be able to position on the scroll bar.

HORIZONTAL SCROLL BAR

A horizontal scroll bar is most often used to move horizontally through information in an
associated window, horizontal list or text field so that additional data which is hidden
outside of the displayed portion can be viewed. The “Hz-Scroll Bar” option, however,
is not designed for such use. Instead, creating a horizontal scroll bar directly from the
menu (or object bar) causes it to be added to the current resource, independent of any
other object. For example, such a scroll bar could be used as a volume control for an
application. Selecting “Hz-Scroll Bar” causes the following object to appear:

NOTE: To associate a horizontal scroll bar with a window, a text field or a horizontal
list, simply select the horizontal scroll bar option or flag available in the editor for each
of these objects.

To modify the scroll bar, call its editor. The following window will appear:

Chapter 27 — Control Objects 319

stringlD: |FIELD_E| J ---sbFlags---
[] SBF_VERTICAL

[<] SBF_HORIZONTAL
---woFlags---

[] wOF_BORDER
[] wOF_MINICELL
[0 0

NOTE: The editor for the horizontal scroll bar is actually an editor for a generic scroll
bar object but with the SBF_HORIZONTAL flag set. If this flag is toggled off, or if
another SBF flag is set, the scroll bar will no longer be displayed as a horizontal one.

flags

The flags that control the presentation and operation of the horizontal scroll bar are listed
in the right field of the window. The flags are:

SBF_HORIZONTAL—Defines the scroll bar object to be a horizontal scroll bar.
SBF_VERTICAL—Defines the scroll bar object to be a vertical scroll bar.
WOF_BORDER—Draws a single line border around the scroll bar object.
WOF_MINICELL—Uses mini-cell values to determine the object’s position.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF _NON_FIELD_REGION—Causes the horizontal scroll bar object to not be

a form field. If this flag is set the horizontal scroll bar object will occupy all of the
bottom-most space of its parent window.

320 Zinc Application Framework — Programming Techniques

CHILD WINDOW

A window is used as a controlling structure for displaying and interacting with other
objects. This object is known as a child window in order to distinguish it from the main
resource window to which it must be attached. Selecting “Child Window” causes the
following object to appear:

By default, the window is created with a title, a system button, a maximize button and a
minimize button. Other objects can be added by simply selecting them from the menu
or object bar and placing them on the window.

To modify the child window object, call its editor. The following window will appear:

title: Iiﬂe ---Optiong---
minlcon: ljone] [Border
[[] Maximize Button
i [] Minimize Button
stringlD: |RESDURCE_1) st Bl
helpContext: Iﬂme] 2| |---woFlags—
objects: FIELD_1 D WOF_BORDER
WOF_MINICELL
== FIELD_3 J T

[] WwOF_NON_FIELD_REGION
[] wOF_NON_SELECTABLE

Ad edElans.

Chapter 27 — Control Objects 321

title

Enter in this field the text exactly as you want it to appear in the window’s title. If you
do not want a title for the window, delete the default string ““Title.”

minicon

This field designates the icon to be associated with the window when it is minimized.
Select the combo box button to view a list of the available icon images. If you select one
of the icons listed, the window will be represented by it when in a minimized state. The
end user will be able to click on the icon in order to restore the window to its original
size on the screen. (See the Image Editor section of “Chapter 30—Utilities Options” for
information on creating icon images.)

stringlD

Enter in this field a string that will distinguish the child window from other objects.

helpContext

This field designates the help context to be associated with the child window. Select the
field’s combo box button to view a list of the available help contexts. If you select one
of the help contexts listed, the help message of that context will be displayed whenever
the user positions on the child window and requests help. (See the Help Editor section
of “Chapter 30—Help Options™ for information on creating help contexts.)

objects

This field displays the objects, listed by their string identifications, that are currently
attached to the child window. To delete an object from the child window, position the
cursor (i.e., highlight bar) on the desired object and press <Ctrl+Del>. To re-order the
child window objects within the object list, position the cursor (i.e., highlight bar) on the
desired object and press the <Ctrl+T> or <Ctrl+d> keys. Each time <Ctrl+T> is pressed,
the highlighted object will be moved up one space in the object list. Similarly, each time
<Ctrl+!> is pressed, the highlighted object will be moved down one space in the object
list. (NOTE: The tab sequence of the objects in the child window is the order of the
objects in the child window object list.)

322 Zinc Application Framework — Programming Techniques

options and flags

The options that control the presentation of the child window are listed in the upper
portion of the field on the right half of the window. The options are:

Border—Draws a three-dimensional border around the outer perimeter of the
window. (NOTE: This is an actual UIW_BORDER object, unlike the WOF_-
BORDER flag, which basically just outlines the window field.)

Maximize Button—Attaches a maximize button to the window that will enlarge the
window to its maximum size on the screen when selected.

Minimize Button—Attaches a minimize button to the window that will reduce the
window to its minimum size on the screen when selected.

System Button—Adttaches a system button to the window. When selected, a system
button displays the following selectable options: Restore, Move, Size, Minimize,
Maximize and Close.

The flags that control the presentation and operation of the child window are listed in the
lower portion of the field on the right half of the window. The flags are:

WOF_BORDER—Draws a single line border around the window. If the application
program is running in text mode, no border is drawn.

WOF_MINICELL—Uses mini-cell values to determine the mini-cell heights.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the window object to not be a form field.
If this flag is set the window object will occupy all of the remaining space of its
parent window.

WOF_NON_SELECTABLE—Prevents the window from being selected. If this flag
is set, the user will not be able to position, nor edit, on the window.

WOAF_DIALOG_OBJECT—Creates the window as a dialog box. A dialog box
is a temporary window used to display or receive information from the user. Using
this flag will cause a dialog style border to be displayed.

WOAF_LOCKED—Prevents the user from removing the window from the screen
display.

Chapter 27 — Control Objects 323

324

WOAF_MDI_OBJECT—Creates the window as an MDI window. If the MDI
window is added to the Window Manager, it becomes an MDI parent (i.e., it can
contain MDI child objects.) An MDI parent must have a pull-down menu. In
general, other than the standard support objects (i.e., system button, border, title, etc.)
and the pulldown menu, MDI parent windows should only contain MDI children.

If the MDI window is added directly to another MDI window, it will become an MDI
child object. MDI child windows can be moved or sized but will remain entirely
within the MDI parent window.

WOAF_MODAL—Prevents any other window from receiving event information
from the Window Manager. A modal window receives all event information until it
is removed from the screen display.

WOAF_NO_DESTROY—Prevents the Window Manager from calling the window’s
destructor. If this flag is set, the window can be removed from the screen display,
but the programmer must call the destructor associated with the window to actually
destroy it.

WOAF_NO_MOVE—Prevents the end user from changing the screen location of
the window during an application.

WOAF_NON_CURRENT—Prevents the window from being made current.
However, clicking on the window with the mouse will call the window’s user
function.

WOAF_NO_SIZE—Prevents the end user from changing the size of the window
during an application.

WOAF_TEMPORARY—Causes the window to only occupy the screen temporarily.
Once another window is selected from the screen, the temporary window is removed
from the Window Manager (i.e., erased from the display). Once removed, a
temporary window will be destroyed if the WOAF_NO_DESTROY flag is not set.

Zinc Application Framework — Programming Techniques

CHAPTER 28 - MENU OBJECTS

The menu category includes objects used specifically for creating menus that display
selectable options. Selecting “Menu” causes the following associated menu to appear:

PULL-DOWN MENU

A pull-down menu acts as a structure for selectable menu items that appear in a single
horizontal line. It automatically occupies the length of the top portion of the window to
which it is attached. Selecting the “Pull-Down Menu” option and attaching it to a
window causes the following object to appear:

Item

A multi-level selectable menu is created by adding pull-down items and pop-up items to
the pull-down menu. The pull-down menu object is automatically created with one pull-
down item attached to it. (For information on adding more items, see “Add Item” of this
section.)

To modify the pull-down menu, call its editor. The following window will appear:

Chapter 28 — Menu Objects 325

stringID: [FIELD_1 | |--wnFlags-—

[WNF_AUTO_SORT

(] WNF_ND_WRAP
---woFlags---

[] wOF_BORDER

[] WOF_NON_SELECTABLE

helpContext: | [None)
objects: ?’ FIELD_2

stringlD

Enter in this field a string that will distinguish the pull-down menu object from other
objects.

helpContext

This field designates the help context to be associated with the pull-down menu. Select
the combo box button to view a list of the available help contexts. If you select one of
the help contexts listed, the help message of that context will be displayed whenever the
user positions on the pull-down menu and requests help. (See the Help Editor section of
“Chapter 30—Help Options” for information on creating help contexts.)

objects

This field displays the pull-down items, listed by their string identifications, that are
currently attached to the pull-down menu. Select one of these items, and its editor will
appear. (See the Pull-down Item section below for more information on pull-down items.)

To delete a pull-down item from the object list, position the cursor (i.e., highlight bar) on
the desired item and press <Ctrl+Del>. To reorder the pull-down items within the object
list, position the cursor (i.e., highlight bar) on the desired item and press the <Ctrl+T> or
<Ctrl+d> keys. Each time <Ctrl+T> is pressed, the highlighted item will be moved up
one space in the object list. Similarly, each time <Ctrl+l> is pressed, the highlighted
item will be moved down one space in the object list.

326 Zinc Application Framework — Programming Techniques

flags

The flags that control the presentation of the pull-down menu object are listed in the field
on the right half of the window. The flags are:

WOF_BORDER—In graphics mode, this flag draws a single line border around the
pull-down menu. In text mode, no border is drawn.

WOF_NON_SELECTABLE—Prevents the pull-down menu from being selected.
If this flag is set, the user will not be able to position on the pull-down menu.

WNF_AUTO_SORT—Assigns a compare function to alphabetize the items within
the pull-down menu.

WNF_NO_WRAP—Causes the pull-down menu to not wrap when scrolling. By
default, if the highlight is positioned on the last item in the pull-down menu and the
right-arrow key is pressed, the pull-down menu will wrap and position itself on the
first item in the pull-down menu. The WNF_NO_WRAP flag disables this feature.

Add Item

Selecting this button causes a pull-down item to be added to the pull-down menu. (For
more information on pull-down items, refer to the Pull-Down Item section below.)

PULL-DOWN ITEM

A pull-down item serves as the first level of selection in a pull-down menu. It can only
be created by selecting the “Add Item” button contained in the pull-down menu’s editor.
The figure below shows a pull-down menu with one pull-down item attached to it:

The multi-level effect of a pull-down menu is further achieved by adding pop-up items
to the pull-down item. (For more information, see “Add Item” of this section.)

Chapter 28 — Menu Objects 327

To modify the pull-down item, including adding pop-up items to it, the editor must be
called. This can only be done by selecting the item from the “objects” field of the pull-
down menu’s editor. Upon doing so, the following window appears:

text: Iltem —l ---wnFlags---
value: D [] WNF_AUTO_SORT
[] WNF_BITMAP_CHILDREN
[] WNF_NO_WRAP

[J WNF_SELECT_MULTIPLE
stringlD: [FIELD_2 T

userFunction: | |

helpContext: [[None] [] BTF_REPEAT

objects: [] BTF_SEND_MESSAGE
---woFlags---
[] WwOF_NON_SELECTABLE
---woAdvancedFlags---

[] WOAF_NON_CURRENT

text

Enter in this field text exactly as you want it to appear on the pull-down item. It will be
automatically centered vertically.

value

This field allows you to enter in a value that serves as a unique identification for a pull-
down item. This allows you to define one user-function that looks at the pull-down item
values, instead of several user-functions that are tied to each pull-down item object. If
the BTF_SEND_MESSAGE flag is set, the value must be an event type.

userFunction

If you want to have a user function associated with the pull-down item, enter in this field
the name of the function. This user function must be defined somewhere in your code
so that the user table, created by Zinc Designer, can retrieve it.

328 Zinc Application Framework — Programming Techniques

NOTE: Do not attach a user function to a pull-down item that has any sub pop-up items
attached to it or that has the BTF_SEND_MESSAGE flag selected. In either case, the
user function will not be called.

stringlD

Enter in this field a string that will distinguish the pull-down item object from other
objects.

helpContext

This field designates the help context to be associated with the pull-down item. Select
the combo box button to view a list of the available help contexts. If you select one of
the help contexts listed, the help message of that context will be displayed whenever the
user positions on the pull-down item and requests help. (See the Help Editor section of
“Chapter 30—Help Options™ for information on creating help contexts.)

objects

This field displays the pop-up items, listed by their string identifications, that are currently
attached to the pull-down item. Select one of these items, and its editor will appear.
(Refer to the Pop-Up Item section below for more information on pop-up items.)

To delete a pop-up item from the object list, position the cursor (i.e., highlight bar) on the
desired item and press <Ctrl+Del>. To reorder the pop-up items within the object list,
position the cursor (i.e., highlight bar) on the desired item and press the <Ctrl+T> or
<Ctrl+> keys. Each time <Ctrl+T> is pressed, the highlighted item will be moved up
one space in the object list. Similarly, each time <Ctrl+{> is pressed, the highlighted
item will be moved down one space in the object list.

flags

The flags that control the presentation and operation of the pull-down item are listed in
the field on the right half of the window. The flags are:

WNF_AUTO_SORT—Assigns a compare function to alphabetize the items within
the pull-down item’s sub-menu.

Chapter 28 — Menu Objects 329

WNF_BITMAP_CHILDREN—Used to denote that some of the pull-down item’s
pop-up items contain bitmaps. This flag must be set if the pull-down item’s sub-
menu will contain non-string objects.

WNF_NO_WRAP—Causes the pull-down item’s menu to not wrap when scrolling.
By default, if the highlight is positioned on the last item in the pull-down item’s sub-
menu and the down key is pressed, the menu will wrap and position itself on the first
item in the pull-down item’s sub-menu. The WNF_NO_WRAP flag disables this
feature.

BTF_REPEAT—Causes the pull-down item to be re-selected (i.e., the user function
is called) if it remains selected for a period of time greater than that specified by
Ul_WINDOW_OBJECT::repeatRate.

BTF_SEND_MESSAGE—Causes the event associated with the pull-down item’s
value to be created and put on the event queue when the pull-down item is selected.
Any temporary windows are removed from the display when this message is sent.

WOF_NON_SELECTABLE—Prevents the pull-down item object from being
selected. If this flag is set, the user will be able to see, but not select, the pull-down
item.

WOAF_NON_CURRENT—The item cannot be made current. If this flag is set,

users will not be able to select the item from the keyboard nor with the mouse.

Add ltem

Selecting this button causes a pop-up item to be added to the pull-down item. (For more
information on pop-up items, refer to the Pop-Up Item section below.)

330 Zinc Application Framework — Programming Techniques

POP-UP ITEM

A pop-up item is used to display and select options associated with a list of menu items.
It can be attached to a pull-down item (as the second level of selection within a pull-down
menu), or to another pop-up item. It can only be created by selecting the “Add Item”
button contained in either the pull-down item’s editor or the pop-up item’s editor.

The multi-level effect of a pop-up menu or a pull-down menu is further achieved by
adding sub-pop-up items to the parent pop-up item. (For more information, see “Add
Item” of this section.) Zinc Designer will allow you to continue adding additional levels
as long as there is available memory for them.

To modify the pop-up item, the editor must be called. This can only be done by selecting
the item from the ‘“‘objects” field of either the pop-up menu’s editor or the pull-down
item’s editor. Upon doing so, the following window appears:

text: | Item I ---wnFlags---

value: D] WNF_AUTO_SORT
userFunction: | | [] WNF_NO_WRAP

[] WNF_SELECT_MULTIPLE

---mniFlags---
stringlD: [] MNIF_CHECK_MARK
helpContext: [[None] [] MNIF_CLOSE
objects:] MNIF_MAXIMIZE

[C] MNIF_MINIMIZE

[] MNIF_MOVE

[] MNIF_RESTORE

[[] MNIF_SEND_MESSAGE

text

Enter in this field text exactly as you want it to appear on the pop-up item. It will be
automatically left justified.

Chapter 28 — Menu Objects 331

value

This field allows you to enter in a value that serves as a unique identification for a pop-up
item. This allows you to define one user-function that looks at the pop-up item values,
instead of several user-functions that are tied to each pop-up item object. If the MNIF_-
SEND_MESSAGE flag is set, the value must be an event type.

userFunction

If you want to have a user function associated with the pop-up item, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table, created by Zinc Designer, can retrieve it.

NOTE: Do not attach a user function to a pop-up item that has any sub pop-up items
attached to it or that has the BTF_SEND_MESSAGE flag selected. In either case, the
user function will not be called.

stringlD

Enter in this field a string that will distinguish the pop-up item object from other objects.

helpContext

This field designates the help context to be associated with the pop-up item. Select the
combo box button to view a list of the available help contexts. If you select one of the
contexts listed, the help message of that context will be displayed whenever the user
positions on the pop-up item and requests help. (See the Help Editor section of “Chapter
30—Help Options”™ for information on creating help contexts.)

objects

This field displays the pop-up items, listed by their string identifications, that are attached
to the current pop-up item. Select one of these items, and its editor will appear.

To delete a pop-up item from the object list, position the cursor (i.e., highlight bar) on the
desired item and press <Ctrl+Del>. To reorder the pop-up items within the object list,
position the cursor (i.e., highlight bar) on the desired item and press the <Ctrl+T> or
<Ctrl+d> keys. Each time <Ctrl+T> is pressed, the highlighted item will be moved up
one space in the object list. Similarly, each time <Ctrl+l> is pressed, the highlighted
item will be moved down one space in the object list.

332 Zinc Application Framework — Programming Techniques

flags

The flags that control the presentation and operation of the pop-up item are listed in the
field on the right half of the window. The flags are:

MNIF_CHECK_MARK—Marks the first position of the menu item’s string infor-
mation with a check-mark if the item has been selected (i.e., the WOS_SELECTED
status flag is set).

MNIF_MAXIMIZE—Causes the menu item to be selectable only when the parent
window can be maximized.

MNIF_MINIMIZE—Causes the menu item to be selectable only when the parent
window can be minimized.

MNIF_MOVE—Causes the menu item to be selectable only when the parent window
can be moved.

MNIF_RESTORE—Causes the menu item to be selectable only when the parent
window is in a maximized or minimized state.

MNIF_SEND_MESSAGE—Causes the event associated with the menu item’s value
to be created and put on the event queue when the menu item is selected. Any
temporary windows are removed from the display when this message is sent.

MNIF_SEPARATOR—The menu item is a separator (i.e., a horizontal line used to
separate menu items). It has no text information associated with it.

MNIF_SIZE—Causes the menu item to be selectable only when the parent window
can be sized.

BTF_DOUBLE_CLICK—Completes the item’s action when the item has been
selected twice within a period of time specified by UI_WINDOW_OBJECT::-
doubleClickRate.

BTF_DOWN_CLICK—Completes the item’s action on an item down-click, rather
than on a down-click and release action.

BTF_NO_TOGGLE—Does not toggle the item’s WOS_SELECTED status flag. If
this flag is set, the WOS_SELECTED window object status flag is not set when the
menu item is selected.

Chapter 28 — Menu Objects 333

BTF_SEND_MESSAGE—Causes the event associated with the menu item’s value
to be created and put on the event queue when the menu item is selected. Any
temporary windows are removed from the display when this message is sent.

WOF_BORDER—Draws a single line border around the pop-up item. In text mode,
no border is drawn.

WOF_JUSTIFY_CENTER—Center-justifies the text information associated with the
pop-up item.

WOF_JUSTIFY_RIGHT—Right-justifies the text information associated with the
pop-up item.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell coordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD REGION—Causes the pop-up item to not be a form field. If
this flag is set the item will occupy all the remaining space of its parent window.

WOF_NON_SELECTABLE—Prevents the pop-up item from being selected.

WOAF_NON_CURRENT—Prevents the item from being made current. If this flag
is set, users will not be able to select the item from the keyboard nor with the mouse.

Add ltem

Selecting this button causes an additional pop-up item to be added to the current pop-up
item.

TOOL BAR

A tool bar is used as a controlling structure for a set of selectable window objects. It
differs from the pull-down menu in that a variety of objects can be added to it—not just
string items. The tool bar will automatically occupy the upper-most area available in a
window, positioning itself directly below the pull-down menu, if one exists. Multiple tool
bars may be added to a window. Selecting “Tool Bar” and attaching it to a window
causes the following object to appear:

334 Zinc Application Framework — Programming Techniques

An object can be added to the tool bar by selecting the desired object from the control
window’s menu or object bar and placing it on the resource window’s tool bar. The
control window’s object bar itself is an example of a group of bitmapped buttons that
have been attached to a tool bar.

To modify the tool bar, call its editor. The following window will appear:

--wnFlags---

[J wNF_NO_wRAP

[WNF_SELECT_MULTIPLE
Objects: [wNF_AUTO_SORT
—--woFlags---

[X] wOF_BORDER

[] wOF_MINICELL

(X] WOF_NON_FIELD_REGION
[] wOF_NON_SELECTABLE

stringlD:

helpContext: | [None)

stringID

Enter in this field a string that will distinguish the tool bar from other objects.

helpContext

This field designates the help context to be associated with the tool bar. Select the combo
box button to view a list of the available help contexts. If you select one of the contexts
listed, the help message of that context will be displayed whenever the user positions on
the tool bar and requests help. (See the Help Editor section of “Chapter 30—Help
Options” for information on creating help contexts.)

Chapter 28 — Menu Objects 335

objects

This field displays the objects, listed by their string identifications, that are currently
attached to the tool bar. Select one of these objects, and its editor will appear. To delete
a tool bar object from the object list, position the cursor (i.e., highlight bar) on the desired
object and press <Ctrl+Del>. To reorder the tool bar objects within the object list,
position the cursor (i.e., highlight bar) on the desired object and press the <Ctrl+T> or
<Ctrl+{> keys. Each time <Ctrl+T> is pressed, the highlighted object will be moved up
one space in the object list. Similarly, each time <Ctrl+!> is pressed, the highlighted
object will be moved down one space in the object list.

flags

The flags that control the presentation and operation of the tool bar are listed in the field
on the right half of the window. The flags are:

WNF_AUTO_SORT—Assigns a compare function to alphabetize the items within
the tool bar.

WNF_BITMAP_CHILDREN—Used to denote that some of the tool bar’s sub-
objects contain bitmaps. This flag must be set if the tool bar will contain non-string
objects.

WNF_NO_WRAP—Causes the tool bar to not wrap when scrolling. By default, if
the highlight is positioned on the last item in the tool bar and the down-arrow key is

pressed, the tool bar highlight will wrap and reposition itself on the first item. The
WNF_NO_WRAP flag disables this feature.

WNF_SELECT_MULTIPLE—Allows multiple items within the tool bar to be
selected.

WOF_BORDER—In graphics mode, this flag draws a single line border around the
tool bar. In text mode, no border is drawn.

WOF_NON_FIELD_REGION—The tool bar is not a form field. If this flag is set
the tool bar will occupy the top-most space within the parent window.

WOF_NON_SELECTABLE—Prevents the tool bar from being selected. If this flag
is set, the user will not be able to position on the tool bar.

Zinc Application Framework — Programming Techniques

CHAPTER 29 - STATIC OBJECTS

The static category includes window objects that are generally not designed to be edited
nor interacted with by an end user. Selecting the “Static”” option causes the following
associated menu to appear:

Edit Resource

% Input

Control

Menu

PROMPT

A prompt object is used to provide lead information for another window object. Selecting
“Prompt” causes the following object to appear:

Prompt

To modify the prompt object, call its editor. The following window will appear:

Chapter 29 — Static Objects 337

text: lﬁmplj 4| ---woFlags---
ald

stiingID: [FIELD_1 LR e Ak
[] WOF_JUSTIFY_CENTER

[] WOF_JUSTIFY_RIGHT
[] wOF_MINICELL

text

Enter in this field a text string exactly as you want it to appear in the prompt. It will be
automatically centered vertically. If either the WOF_JUSTIFY_CENTER or the WOF_-
JUSTIFY_RIGHT flag is set and text string is longer than the length of the prompt field,
the field must be sized in order to display the entire text.

stringlD

““ Enter in this field a string that will distinguish the prompt object from other objects.

flags

The flags that control the presentation of the prompt are listed in the field on the right
half of the window. The flags are:

WOF_BORDER—Draws a single-line border around the object in graphics mode.
In text mode, it causes a shadow to be displayed on the prompt.

WOF_JUSTIFY_CENTER—Center-justifies the text within the prompt.
WOF_JUSTIFY_RIGHT—Right-justifies the text within the prompt.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell coordinates. This flag is valid in graphics modes only.

338 Zinc Application Framework — Programming Techniques

GROUP

The group object is used to allow physical grouping of window objects. For example, a
series of radio buttons can be grouped together by first creating a group object and then
adding the radio buttons. Selecting “Group” causes the following object to appear:

To modify the group object, call its editor. The following window will appear:

[Group

text: I Group
stringlD: FIELD_7
helpContext: L
objects:

---wnFlags---

[] wNF_AUTO_SELECT

[] WNF_BITMAP_CHILDREN
[] WNF_NO_wRAP

[] WNF_SELECT_MULTIPLE
---woFlags---

[] woF_BORDER

[] WOF_MINICELL

O WOF_NON_FIELD_REGION

text

Enter in this field text exactly as you want it to appear in the upper left corner of the
group object’s border. If the text string is longer than the width of the group box, only
the portion that fits will be displayed.

Chapter 29 — Static Objects

339

stringlD

Enter in this field a string that will distinguish the group object from other objects.

objects

This field displays the objects, listed by their string identifications, that are currently
attached to the group. To delete a group object from the object list, position the cursor
(i.e., highlight bar) on the desired object and press <Ctrl+Del>. To reorder the group
objects within the object list, position the cursor (i.e., highlight bar) on the desired object
and press the <Ctrl+T> or <Ctrl+!> keys. Each time <Ctrl+T> is pressed, the highlighted
object will be moved up one space in the object list. Similarly, each time <Ctrl+l> is
pressed, the highlighted object will be moved down one space in the object list.

flags

The flags that control the presentation and operation of the group are listed in the field
on the right half of the window. The flags are:

WNF_BITMAP_CHILDREN—Used to denote that some of the group’s sub-objects
contain bitmaps. This flag must be set if the group will contain non-string objects.

WNF_SELECT_MULTIPLE—Allows multiple items within the group to be
selected.

WOF_BORDER—In graphics mode, this flag draws a single line border around the
group box. In text mode, no border is drawn.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell coordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD_REGION—The group box is not a form field. If this flag is
set the group box will occupy any remaining space within the parent window.

WOF_NON_SELECTABLE—Prevents the group from being selected. If this flag
is set, the user will not be able to position on the group.

340 Zinc Application Framework — Programming Techniques

ICON

An icon is used to display a 32x32 pixel bitmap image to the screen. It is part of the
static category because it is often present in an application as an indicator of some sort
that cannot be interacted with; however, an icon can also be created for interaction
purposes, such as a question mark icon that displays help when selected. Selecting
“Icon” causes the following object to appear:

---icFlags---
[IcF_DOUBLE_CLICK

iconlmage:

---woFlags---

tle: [tcon | | wor_soroer

(<] WOF_JUSTIFY_CENTER

] [] WOF_JUSTIFY_RIGHT
[] wOF_MINICELL

stiinglD: [FIELD_3 | | wor_NoN_SELECTABLE

helpContext: |lNone] #| |--woAdvancedFlags--—-

userFunction: l

iconimage

This field designates the image to be associated with the icon. Select the combo box
button to view a list of the available images. If you select one of the images listed, it will
be displayed on the icon. (See the Image Editor section of “Chapter 30—Utilities
Options™ for information on creating bitmap images.)

Chapter 29 — Static Objects 341

title

Enter in this field the text exactly as you want it to appear in the rectangular region below
the icon. If you do not want a title for the icon, delete the default string “Icon.”

stringlD

Enter in this field a string that will distinguish the icon object from other objects.

helpContext

This field designates the help context to be associated with the icon. Select the combo
box button to view a list of the available help contexts. If you select one of the help
contexts listed, the help message of that context will be displayed whenever the user
positions on the icon and requests help. (See the Help Editor section of “Chapter
30—Help Options™ for information on creating help contexts.)

flags

The flags that control the presentation and operation of the icon are listed in the field on
the right half of the window. The flags are:

ICF_DOUBLE_CLICK—Completes the icon action on a mouse double-click, rather
than on a single-click and release action.

WOF_BORDER—Draws a single-line border around the icon bitmap and another
border around the icon’s title.

WOF_JUSTIFY_CENTER—Center-justifies the string information within the icon.
This flag only has effect if the icon is attached to a list.

WOF _JUSTIFY_RIGHT—Right-justifies the string information within the icon.
This flag only has effect if the icon is attached to a list.

WOF_NON_SELECTABLE—Indicates that the icon object cannot be selected. If
this flag is set, the user will not be able to select the icon.

342 Zinc Application Framework — Programming Techniques

CHAPTER 30 - UTILITIES OPTIONS

The utilities category provides options that allow you to create images and help utilities

to be used throughout your application. Selecting “Utilities” causes the following menu
to appear:

esource Object |

IMAGE EDITOR

The image editor allows you to create icon and bitmap images that can be assigned to
other objects in your application. This option only has effect in graphics mode. Selecting
“Image Editor” causes the following window to appear:

Chapter 30 — Utilities Options 343

Image Edit Options Help

screen |
left/right

The menu bar

344

Using the options presented as menus in the main window of the Image Editor, bitmaps
and icons can be created and saved for use with Zinc resources. Selecting some menu
items causes an action to take place immediately, while selecting others causes a related
window to appear, from which more options are available. Menu items that cause another
window to appear are distinguished by ellipses (...). A brief explanation of each menu
item follows:

Image—This menu consists of options that control the creation of images and exiting
the Image Editor. The selectable items on this menu are: New..., Load..., Save, Save
As..., Import, Delete... and Exit.

Edit—This menu consists of options that edit images. The edit options are: Undo,
Clear, Pencil, Brush, Line, Rectangle, Rectangle - solid, Ellipse, Ellipse - solid and
Fill.

Options—This menu consists of option settings. The options are: Grid and Brush
Size.

Zinc Application Framework — Programming Techniques

Help—This option provides general help for the Image Editor.

All of these menu items are discussed in more detail in their respective sections that
follow.

The tool bar

The tool bar presents the pencil, brush, line, rectangle, rectangle solid, ellipse, ellipse solid
and fill menu options of the pull-down menu. It is designed to allow you to easily select
these options with a mouse.

The color palette

The available colors are displayed in this field. To select a color, click on it with the left
or right mouse button.

screen

This field is used when you want to have part of your image to be transparent (i.e., to
show through to the screen behind it). Whichever mouse button is used to click on this
field will have the ability to draw the transparent region. For example, if you want to
create a window icon that displays the area underneath it, you could draw the frame for
the window with a color from the color field and then click on the “Screen” field and
fill the frame in.

The drawing field

This field is the drawing area where you create your icon. You can paint one pixel at a
time by positioning on it and pressing a mouse button, or you can paint in continuous
motion by holding down a mouse button and dragging the cursor.

The image field

This area displays the image in its actual size as you create it.

Chapter 30 — Utilities Options 345

left/right

The box below “left” displays the color selected by the left mouse button. When you
position the cursor anywhere in the “bitmap” area and press the left mouse button, the
color shown in the “left”” box will be painted onto the pixel underneath the cursor.

The box below “right” displays the color selected by the right mouse button. When you
position the cursor anywhere in the “‘bitmap” area and press the right mouse button, the
color shown in the “right” box will be painted onto the pixel underneath the cursor.

If either the right or the left mouse buttons have selected the “Screen” field instead of

a color from the colors field, the appropriate box of the “left/right” field will be grey.

Image options

The image options of the window’s pull-down menu control the general operations of the
image editor. Selecting “Image” causes the following menu to appear:

Options

Save
Save As...

Import

Delete...

Exit

screen | .
left/right

346 Zinc Application Framework — Programming Techniques

New—This option allows you to create a new image. Selecting it causes a window
similar to the following to appear:

Image Type: o ,‘ Width:
Image Mame: [Height:

Interaction with the fields of the “New” window is accomplished as follows:

* The “Image Type” field designates the type of image—bitmap or icon—to be
created. Select the combo box button or press the <down arrow>: then select
one of these two options. If the image will be designed for use with an icon,
select “Icon.” For use with all other objects, select “Bitmap.”

* If you want to create a new image, enter the name for the new image in the
“Image Name” field.

* Enter in the “Width” field the desired pixel width for the image. If the image
type is icon, the width must be 32.

* Enter in the “Height” field the desired pixel height for the image. If the image
type is icon, the width must be 32.

* Other images of the current type (i.e., bitmap or icon) that have been created
with the image editor in the current application file are listed in the field in the
center of the window. If one of these images is selected, its name will appear
at the “Image name” prompt, indicating that it is to be loaded. (For more

Chapter 30 — Utilities Options 347

information on loading a previously created image, see the explanation for the
“Load” option below.)

The “New” window also includes three buttons which operate in the following
manner:

e Selecting the “OK” button causes an image to be created which will be given
the name entered at the “Image name” prompt. If creation of the image is
successful, the “New”” window will close. If no information has been entered
within the “New” window and the “OK” button is selected, the window will
simply close without executing any changes.

o Selecting the “Cancel” button causes the window to close without executing any
changes.

e Additional information about creating new images appears when the “Help”
button is selected.

Load—This option allows you to recall a previously created image from the current
file. Selecting “Load” causes a window similar to the following to appear:

Image Type: Width: E
Image Mame: Height: E‘

Interaction with the fields of the “Load” window is accomplished as follows:

348 Zinc Application Framework — Programming Techniques

* The “Image Type” field designates the type of the image—bitmap or icon—to
be loaded. Select the combo box button or press the <down arrow> and select
one of these two options to view the available images of that type, which will
be listed in the field in the center of the window.

* Enter in the “Image Name” field the name of the image that is to be loaded, or
select it from the list below and the name will appear at this prompt.

* The “Width” field displays the pixel width for the image designated at the
“Image Name” prompt. This number cannot be changed when loading an
image.

* The “Height” field displays the pixel height for the image designated at the
“Image Name” prompt. This number cannot be changed when loading an
image.

* All images of the current type (i.e., bitmap or icon) that have been created with
the image editor in the current application file are listed in the field in the center
of the window. If one of these images is selected, its name will appear at the
“Image name” prompt, indicating that it is to be loaded.

The “Load” window also includes three buttons which operate in the following
manner:

* Selecting the “OK” button causes the image designated at the “Image name”’
prompt to be loaded. If the image is successfully loaded, the “Load” window
will close. If no information has been entered within the “Load” window and
the “OK” button is selected, the window will simply close without executing
any changes.

* Selecting the “Cancel” button causes the window to close without executing any
changes.

* Additional information about loading images appears when the “Help” button
is selected.

Once the image has been loaded and appears in the drawing area, it can be modified
in any way. When the Image | Save option is subsequently selected, the image will
be saved in its present condition, replacing the original version. (Refer to the Save
and Save As options of this section for more information on saving images.)

Save—Selecting this option causes the current image to be saved in its present
condition. If the image has never been named, the “Save As” window will appear

Chapter 30 — Utilities Options 349

and allow you to name it by entering a name at the “Image Name” prompt. When
you select the “OK” button, the “Save As” window will close and the image will
be saved under that name. (See the Save As section for further details on how to
save a image for the first time.)

Save As—This option allows you to either save an image that has not been
previously named or to save the current image under another name. Selecting “Save
As” causes the following window to appear:

Image Type:

2]
Image Name: | Height [32]

Interaction with the fields of the “Save As” window is accomplished as follows:

* The “Image Type” field designates the type of image—bitmap or icon—to be
saved. Select the combo box button or press the <down arrow>; then select one
of these two options. If the image will be designed for use with an icon, select
“Icon.” For use with all other objects, select “Bitmap.”

* Enter the name for the image in the “Image Name” field.

* Enter in the “Width” field the desired pixel width for the image. If the image
type is icon, the width must be 32.

* Enter in the “Height” field the desired pixel height for the image. If the image
type is icon, the width must be 32.

350 Zinc Application Framework — Programming Techniques

* Other images of the current type (i.e., bitmap or icon) that have been created
with the image editor in the current application file are listed in the field in the
center of the window. If one of these images is selected, its name will appear
at the “Image name” prompt, and the current image will replace the previous
information of the specified image when the “OK” button is selected.

The “Save As” window also includes three buttons which operate in the following
manner:

* Selecting the “OK” button causes the current image to be saved under the name
entered at the “Image name” prompt. If the save operation is successful, the
“Save As” window will close. If no information has been entered within the
“Save As” window and the “OK” button is selected, the window will simply
close without executing any changes.

* Selecting the “Cancel” button causes the window to close without executing any
changes.

* Additional information about saving images appears when the “Help” button is
selected.

Import—This option allows you to import an image from another file. Images can

be imported from .BMP, .DAT or .ICO files. Selecting “Import™ causes a window
similar to the following to appear:

Chapter 30 — Utilities Options 351

352

File Name: I

Directory: d:\des

Drives: Directories:

& ..

Interaction with the fields of the “Import Image” window is accomplished as
follows:

* The name of the file to be imported is typed in the field adjacent to the prompt
“File name:” or it can be selected from the “Files” list.

* Pressing “Ok” will cause the image to be imported into the “Image Editor”
window.

* Pressing “Cancel” will cause the “Import Image” window to be closed. No
change is made in the “Image Editor” window.

* Additional information about importing images appears when the ““‘Help” button
is selected.

Delete—This option allows you to delete an image. Selecting “Delete” causes a
window similar to the following to appear:

Zinc Application Framework — Programming Techniques

width: [32]
Height: [32 |

Interaction with the fields of the “Delete” window is accomplished as follows:

o The “Image Type” field designates the image type of the image—bitmap or
icon—to be deleted. Select the combo box button or press the <down arrow>
and select one of these two options to view the available images of that type.

» Enter in the “Image Name” field the name of the image to be deleted, or select
it from the list in the center of the window and the name will appear at this
prompt.

e The “Width” field displays the pixel width for the image designated at the
“Image Name” prompt. This field is not editable.

e The “Height” field displays the pixel height for the image designated at the
“Image Name” prompt. This field is not editable.

» All images of the current type (i.e., bitmap or icon) that have been created with
the image editor in the current application file are listed in the field in the center
of the window. If one of these images is selected, its name will appear at the
“Image Name” prompt, indicating that it is to be deleted.

The “Delete” window also includes three buttons which operate in the following
manner:

Chapter 30 — Utilities Options 353

» Selecting the “OK” button causes the image designated at the “Image name”
prompt to be deleted. If the image is successfully deleted, the “Delete” window
will close. If no information has been entered within the “Delete” window and
the “OK” button is selected, the window will simply close without executing
any changes.

e Selecting the “Cancel” button causes the window to close without executing any
changes.

* Additional information about deleting images appears when the “Help” button
is selected.

Exit—Selecting this option closes the “Image Editor” window.

Edit option

The “Edit” menu allows you to select the following edit options:

%‘ Undo—This option allows you to undo the last modification (during the current edit)
“ to an image.

Clear—This option allows you to clear the image grid.

pixel wide).

~; Pencil—This option sets the current drawing pen to the width of a pencil (i.e., one
\
‘ Brush—This option sets the current drawing brush to the width specified in “Options
] | Brush Size”. The default width is 3 pixels.
Line—This option allows you to draw a line. A line is drawn by clicking the left
mouse button (specifying the beginning point) and moving the mouse cursor to the
ending point and releasing the mouse button. The width of the line depends upon the
brush size.

Rectangle—This option allows you to create a rectangle (not filled). A rectangle is
made by clicking the left mouse button (specifying the beginning point) and, while
keeping the mouse button depressed, moving the mouse cursor to the ending point
and releasing the mouse button.

Rectangle - Solid—This option allows you to create a rectangle (filled). A rectangle
is made by clicking the left mouse button (specifying the beginning point) and, while

354 Zinc Application Framework — Programming Techniques

keeping the mouse button depressed, moving the mouse cursor to the ending point
and releasing the mouse button.

Ellipse—This option allows you to create an ellipse (not filled). An ellipse is made
by clicking the left mouse button (specifying the beginning point of a rectangle that
defines the ellipse) and, while keeping the mouse button depressed, moving the
mouse cursor to the ending point of the defining rectangle and releasing the mouse
button.

Ellipse - Solid—This option allows you to create an ellipse (filled). An ellipse is
made by clicking the left mouse button (specifying the beginning point of the
defining rectangle) and, while keeping the mouse button depressed, moving the mouse

cursor to the ending point of the defining rectangle and releasing the mouse button.

Fill—This option allows you to perform a ‘flood fill’ with the current drawing color.

Options option

The “Options” menu option allows you to change the following edit options:

Grid—This option, when selected, displays a grid on the image drawing field. The
grid is displayed by default.

Brush Size—This option allows you to change the current size of the drawing brush.
The available sizes are: 2x2, 3x3, 4x4 and 5x5.

Help option

The help option, when selected, displays help on creating images using the image editor.

HELP EDITOR

The help editor allows you to create help contexts to be used throughout your application.
Selecting ““Help Editor” causes the following window to appear:

Chapter 30 — Utilities Options 355

Context Ip

title: ||

message:

The menu bar

Using the options presented as menus in the main window of the Help Editor, help

contexts can be created and saved for use with Zinc objects. Selecting some menu items

causes an action to take place immediately, while selecting others causes a related window

to appear, from which more options are available. Menu items that cause another window

i to appear are distinguished by ellipses (...). A brief explanation of each menu item
follows:

Context—This menu consists of options that control the creation of help contexts and
exiting the Help Editor. The selectable items on this menu are: New..., Load..., Save,
Save As..., Delete... and Exit.

Help—This option provides general help for the Help Editor.

All of these menu items are discussed in more detail in sections that follow.

title
\ Enter in this field a title to be displayed on the help window’s title bar.

356 Zinc Application Framework — Programming Techniques

message

Enter in this field the text to be displayed as help information within the help window.

Context options

The context options of the window’s pull-down menu control the general operations of
the help editor. Selecting *“Context™ causes the following menu to appear:

Load.

Save —l

Save As...

Delete...

Exit

New—This option allows you to create a new help context. Selecting it causes a
window similar to the following to appear:

Chapter 30 — Utilities Options 357

Context Name: ||

Interaction with the fields of the “New’ window is accomplished as follows:

e Enter in the “Context Name” field a name for the new help context to be
created.

» Other help contexts that have been created with the help editor in the current
application file are listed in the field in the center of the window. If one of these
contexts is selected, its name will appear at the “Context name” prompt,
indicating that it is to be loaded. (For more information on loading a previously
created context, see the explanation for the “Load” option below.)

The “New” window also includes three buttons which operate in the following
manner:

* Selecting the “OK” button causes a help context to be created which will be
H given the name entered at the “Context name” prompt. If creation of the
| context is successful, the “New’”” window will close. If no information has been
entered within the ‘“New” window and the “OK” button is selected, the

window will simply close without executing any changes.

e Selecting the “Cancel” button causes the window to close without executing any
changes.

e Additional information about creating new contexts appears when the “Help”
button is selected.

358 Zinc Application Framework — Programming Techniques

Load—This option allows you to recall a previously created context of the current
file. Selecting “Load” causes a window similar to the following to appear:

Context Name: IL]

Interaction with the fields of the “Load” window is accomplished as follows:

* Enter in the “Context Name” field the name of the context to be loaded, or
select it from the list in the center of the window and the name will appear at
this prompt.

* Other help contexts that have been created with the help editor in the current
application file are listed in the field in the center of the window. If one of these
contexts is selected, its name will appear at the “Context name” prompt,
indicating that it is to be loaded.

The “Load” window also includes three buttons which operate in the following
manner:

* Selecting the “OK” button causes the help context indicated at the “Context
name” prompt to be loaded. If the context is successfully loaded, the “Load”
window will close. If no information has been entered within the “Load”
window and the “OK” button is selected, the window will simply close without
executing any changes.

* Selecting the “Cancel” button causes the window to close without executing any
changes.

Chapter 30 — Utilities Options 359

360

¢ Additional information about loading contexts appears when the “Help” button
is selected.

Save—This option causes the current help context to be saved in its present
condition. If the context has never been named, the “Save As” window will appear
and allow you to name it by entering a name at the “Context Name”” prompt. When
you select the “OK” button, the “Save As” window will close and the context will
be saved under that name. (See the Save As section for further details on how to
save a context for the first time.)

Save As—This option allows you to either save a help context that has not been
previously named or to save the current context under another name. Selecting
“Save As” causes the following window to appear:

Context Name: ||

Interaction with the fields of the “Save As” window is accomplished as follows:

« Enter in the “Context Name” field a name for the current context or select one
from the list in the center of the window and the name will appear at this
prompt.

e Other help contexts that have been created with the help editor in the current
application file are listed in the field in the center of the window. If one of these
contexts is selected, its name will appear at the “Context name” prompt,
indicating that the current context is to replace the previous information.

Zinc Application Framework — Programming Techniques

The “Save As” window also includes three buttons which operate in the following
manner:

* Selecting the “OK” button causes the current help context to be saved under the
name entered at the “Context name” prompt. If the save operation is
successful, the “Save As” window will close. If no information has been
entered within the “Save As” window and the “OK” button is selected, the
window will simply close without executing any changes.

* Selecting the “Cancel” button causes the window to close without executing any
changes.

* Additional information about saving help contexts appears when the “Help”
button is selected.

Delete—This option allows you to delete a help context. Selecting “Delete” causes
a window similar to the following to appear:

Interaction with the fields of the “Delete” window is accomplished as follows:
* Enter in the “Context Name” field the name of the help context to be deleted.
* Other help contexts that have been created with the help editor in the current

application file are listed in the field in the center of the window. If one of these

Chapter 30 — Utilities Options 361

images is selected, its name will appear at the “Context name” prompt,
indicating that it is to be deleted.

The “Delete” window also includes three buttons which operate in the following
manner:

o Selecting the “OK” button causes the help context designated at the *“Context
name”’ prompt to be deleted. If the context is successfully deleted, the “Delete”
window will close. If no information has been entered within the “Delete”
window and the “OK” button is selected, the window will simply close without
executing any changes.

e Selecting the “Cancel” button causes the window to close without executing any
changes.

¢ Additional information about deleting contexts appears when the “Help”’ button
is selected.

Exit—Selecting this option closes the ‘“Help Editor” window.

Help option _
The help option, when selected, displays help on creating help contexts using the help
editor.

362 Zinc Application Framework — Programming Techniques

CHAPTER 31 - HELP OPTIONS

The Help category is available so that you can receive help at any time during Zinc
Designer’s execution. The various options represent the different areas within Zinc
Designer where help information is available.

Selecting “Help” causes the following menu to appear:

File Edit Resource Object Utilities

—— ()~

I

- i File
= = Edit

None Object
Resource
Utilities

About Designer

INDEX

The “Index...” option allows you to view all help contexts created within Zinc Designer.
Selecting it causes an index list to appear from which these help contexts are selectable.
When you select a specific help context from the list, the help window associated with
it appears.

FILE

Selecting “File” causes help to be displayed regarding the use of File options in creating
an application with Zinc Designer.

EDIT

Selecting “Edit” causes help to be displayed regarding the use of Edit options in creating
an application with Zinc Designer.

Chapter 31 — Help Options 363

OBJECT

Selecting “Object” causes help to be displayed regarding the use of Object options in
creating an application with Zinc Designer.

PESODRNE i il itiiosiid

Selecting “Resource” causes help to be displayed regarding the use of Resource options
in creating an application with Zinc Designer.

UTILITIES A

Selecting “Utilities” causes help to be displayed regarding the use of Utilities options in
creating an application with Zinc Designer.

ABOUT DESIGNER

Selecting “About Designer” causes information to be displayed regarding the general
contents and specifics of Zinc Designer (e.g., the current version number and copyright
information).

364 Zinc Application Framework — Programming Techniques

SECTION VI
APPENDICES

Section VIl — Appendices 365

366 Zinc Application Framework — Programming Techniques

APPENDIX A — COMPILER CONSIDERATIONS

This appendix explains the initial configuration you must implement in order to compile
your applications with Zinc Application Framework.

Borland

The following libraries are for use with Borland:

DOS_ZIL.LIB
D16_ZIL.LIB
DOS_GFX.LIB
D16_GFX.LIB
BC_LGFX.LIB

BC_16GFX.LIB

DOS_BGLLIB
WIN_ZIL.LIB

0S2_ZIL.LIB

(basic DOS library)

(16-bit DOS library)

(DOS UI_GRAPHICS_DISPLAY)

(DOS UI_GRAPHICS_DISPLAY for 16-bit DOS extender)
(Borland-specific GFX graphics library)

(Borland-specific GFX graphics library for 16-bit DOS
extender)

(DOS UI_BGI_DISPLAY)
(MS Windows library)

(IBM 0OS/2 library)

The following table lists the types of applications that can be built using Borland and Zinc
and the Zinc libraries that are required for each:

Appendix A — Compiler Considerations 367

Type of application

Required libraries

Comments

(also supports text mode)

BC_16GFX.LIB

DOS with BGI DOS_ZIL.LIB Must also select

(also supports text mode) DOS_BGI.LIB Optionsl|LinkerlLibraries
and turn on “‘Graphics
Library” in IDE or
link GRAPHICS.LIB in
the makefile

DOS with GFX DOS_ZIL.LIB Must also select

(also supports text mode) DOS_GFX.LIB Options|Linkerl|Libraries

BC_LGFX.LIB and turn off “Graphics

Library”

DOS 16-bit (PharLap) D16_ZIL.LIB Must also select

with GFX D16_GFX.LIB OptionsILinkerl|Libraries

and turn off ““Graphics
Library”

Windows

WIN_ZIL.LIB

0872

0OS2_ZIL.LIB

file.

DOS

within the IDE:

Integrated Development Environment (IDE)

For information on building applications with DOS-extenders, please see the READ.ME

To compile applications for DOS in the IDE, the following options must be selected

s Select OptionsICompiler/Code Generation.
Choose the Large model.

» Select Options|Directories.
In the include directory, enter the path of your Zinc include file. For example,
if Zinc is installed on Drive C, the include file directory would be
C:\ZINC\INCLUDE.

368 Zinc Application Framework — Programming Techniques

* Select ProjectlOpen to create a project file.
Enter both your source files and the proper Zinc libraries, as shown in the table
above.

Windows

To compile applications for Windows in the IDE, the following options must be selected
within the IDE:

* Select OptionslApplication.
Choose Window App.

e Select OptionsICompiler/Code Generation.
Choose the Large model.

* Select ProjectlOpen to create a project file.
Enter both your source files, the proper Zinc library as shown above, the .RC
file and the .DEF file.

NOTE: Although you can compile from within the IDE, you must be in Windows to
actually run a Windows application.

0S/72

To compile applications for OS/2 in the IDE, follow the instructions found in the
READ.ME file.

Makefiles

To compile applications using a makefile, the TCC, BCC or BCCX command-line
compilers must be used. Each tutorial program has a sample makefile, BORLAND.-
MAK, that can be used as a template for other programs. The options listed next to
CPP_OPTS in the makefile are recommended by Zinc. The makefile can be run by
typing the following:

make -fborland.mak dos (for DOS)
or
make -fborland.mak windows (for Windows)

Appendix A — Compiler Considerations 369

370

or

make -fborland.mak os2 (for OS/2)

Before using the makefile the following may need to be changed:

Be sure to update your TURBOC.CFG file in the compiler’s BIN directory. The
following lines should be changed to reflect the path of the compiler and Zinc
Application Framework:

-I.;C:\ZINC\INCLUDE;C:\BORLANDC\INCLUDE
-L.;C:\ZINC\LIB\BTCPP310;C:\BORLANDC\LIB

The following line should also be changed in TLINK.CFG to reflect the path of the
compiler and Zinc Application Framework:

-L.;C:\ZINC\LIB\BTCPP310;C:\BORLANDC\LIB

In order to compile Microsoft Windows applications, you must be using Microsoft
Windows Version 3.X and Borland C++ Version 3.1 or later. All of the options
specified in the Borland sample makefile must be used. In addition, the -WE
compiler option and /Twe link option, which build the application as a Windows
executable program, must be included.

In order to compile IBM OS/2 applications, you must be running IBM OS/2 Version
2.X and the Borland compiler for OS/2 2.X. All of the options specified in the

Borland sample makefile must be used.

The appropriate Zinc .LIB files, as shown in the table above, should be linked in.

Here is a sample “‘generic” makefile:

GENERIC tutorial makefile

make -fborland.mak dos (makes the DOS generic program)
make -fborland.mak windows (makes the Windows generic program)
make -fborland.mak os2 (makes the 0S/2 generic program)

Be sure to update your TURBOC.CFG file to include the Zinc paths, e.g.:
-I.;C:\ZINC\INCLUDE;C:\BORLANDC\INCLUDE

-L.;C:\ZINC\LIB\BTCPP310;C:\BORLANDC\LIB

and your TLINK.CFG file to include the Zinc paths, e.g.

-L.;C:\ZINC\LIB\BTCPP310;C: \BORLANDC\LIB

Compiler and linker: (Add -v to CPP_OPTS and /v to LINK_OPTS for debug.)

e

fffff DOS compiler options---------=---=--—----------——-————-——
DOS_CPP_OPTS=-c -ml -0 -w

DOS_LINK_OPTS=/c /x

DOS_O0BJS=c01

--- Use the next line for UI_GRAPHICS_DISPLAY ---

Zinc Application Framework — Programming Techniques

DOS_LIBS=dos_zil dos_gfx bc_lgfx emu mathl cl
--- Use the next line for UI_BGI_DISPLAY ---
#DOS_LIBS=dos_zil dos_bgi graphics emu mathl cl

== Windows compiler options-----------—-————————_________
WIN_CPP_OPTS=-c -ml -O -WE -w

WIN_LINK_OPTS=/c /C /Twe /x

WIN_OBJS=cOwl

WIN_LIBS=win_zil mathwl import cwl

f#h —mmme 0S/2 compiler options----=—=--------ommmme
082_CPP_OPTS=-&

OS2_LINK_OPTS=/c /B:0x10000 /aa

0S2_0OBJS=c02.0bj

0S2_LIBS=0s2_zil.lib c2.1ib o0s2.1lib

CPP=bcc
LINK=tlink

.Ccpp.obj:
$ (CPP) $(DOS_CPP_OPTS) {$< }

.Cpp.obw:
$(CPP) S$(WIN_CPP_OPTS) -o0$*.obw {$< }

.Cpp.obo:
$ (CPP) $(0OS2_CPP_OPTS) -0$*.obo {$< }

L DOS ===
dos: generic.exe

generic.exe: generic.obj
$ (LINK) $(DOS_LINK_OPTS) @&&!
$ (DOS_OBJS) +generic.obj
$*, ,$(DOS_LIBS)
|

e Windows —---mommm oo
windows: wgeneric.exe

wgeneric.exe: generic.obw
S (LINK) $(WIN_LINK_OPTS) @&&!
$ (WIN_OBJS) +generic.obw
S$*, ,$(WIN_LIBS),wgeneric.def
!

rc wgeneric.rc $<

---—-—- 08/ 2 —mmmm e
0s2: ogeneric.exe

ogeneric.exe: generic.obo
$(LINK) $(0OS2_LINK_OPTS) @&&!
$ (0S2_OBJS) +generic.obo
$*, ,$(0S2_LIBS),ogeneric.def
]

rc ogeneric.rc $<

Microsoft

The following libraries are for use with Microsoft:

e DOS_ZIL.LIB (basic DOS library)

Appendix A — Compiler Considerations 37

e D16_ZIL.LIB

* DOS_GFX.LIB
* DI16_GFX.LIB
* MS_LGFX.LIB

e MS_16GFX.LIB

* DOS_MSC.LIB
* WIN_ZIL.LIB

e WNT_ZIL.LIB

(16-bit DOS library)

(DOS UI_GRAPHICS_DISPLAY)

(DOS UI_GRAPHICS_DISPLAY for 16-bit DOS extender)
(Microsoft-specific GFX graphics library)

(Microsoft-specific GFX graphics library for 16-bit DOS
extender)

(DOS UI_MSC_DISPLAY)
(MS Windows library)

(Windows NT library)

The following table lists the types of applications that can be built using Microsoft and
Zinc and the Zinc libraries that are required for each:

Type of application Required libraries Comments
- " —~70T B

DOS with MSC graphics DOS_ZIL.LIB Must also link in

(also supports text mode) DOS_MSC.LIB GRAPHICS.LIB

DOS with GFX DOS_ZIL.LIB Must not link in

(also supports text mode) DOS_GFX.LIB GRAPHICS.LIB
MS_LGFX.LIB

DOS 16-bit (PharLap) D16_ZIL.LIB Must not link in

with GFX D16_GFX.LIB GRAPHICS.LIB

(also supports text mode) MS_16GFX.LIB

Windows WIN_ZIL.LIB

Windows NT WNT_ZIL.LIB

Before using the Microsoft compiler the following may need to be changed:

* Change the environment variable for your include files’ path by entering set
includes=, followed by the paths for your Microsoft include files and your Zinc
include files. For example, if your include files are all on Drive C, enter:

372

Zinc Application Framework — Programming Techniques

set include=.;C:\ZINC\INCLUDE;C:\C700\INCLUDE

e Change the environment variable for the libraries by entering set 1ib=, followed
by the paths for your Microsoft libraries and your Zinc libraries. For example, if
your libraries are all on Drive C, enter:

set lib=.;C:\ZINC\LIB\MSCPP700;C:\C700\LIB

NOTE: Probably the easiest place to change the environment variables is in your
AUTOEXEC.BAT file.

For information on building applications with DOS-extenders, please see the READ.ME
file.

Programmers Workbench (PWB)

To compile DOS or Windows applications in the PWB, the following options must be
selected within the PWB:

e Select ProjectiNew Project.
Select Set Project Template. Choose C++ and either DOS EXE or Windows 3.X
EXE, as desired.
Add your source files to the project.

e Select Options|Language OptionslC++ Compiler Options.
Choose the Large Memory Model.

e Select Options|Link Options.
Set the stack size to 5120.
Add the appropriate libraries (as shown in the table above).
Select Additional Global Options and add /SEGMENTS:256 to the existing
options list.

Makefiles

Each tutorial program has a sample makefile, MICROSFT.MAK, that can be used as a
template for other programs. The options listed next to CPP_OPTS in the makefile are
recommended by Zinc. The makefile can be run by typing the following:

nmake -fmicrosft.mak dos (for DOS)
nmake -fmicrosft.mak windows (for Windows)
nmake -fmscwnt.mak winnt (for Windows NT)

Appendix A — Compiler Considerations 373

 In order to compile Microsoft Windows applications, you must be using Microsoft
Windows Version 3.X. All of the options specified in the Microsoft sample makefile
must be used. In addition, the -Gsw compiler option, which compiles the application
as a Windows executable program, must be included.

+ The appropriate Zinc .LIB files, as shown in the table above, should be linked in.

Here is a sample “generic”’ makefile for DOS and Windows 3.X:

GENERIC makefile

nmake -fmicrosft.mak dos (makes the DOS generic program)
nmake -fmicrosft.mak windows (makes the Windows generic program)

Be sure to set the LIB and INCLUDE environment variables for Zinc, e.g.:
set INCLUDE=.;C:\ZINC\INCLUDE;C:\C700\INCLUDE
set LIB:.;C:\ZINC\LIB\MSCPP700;C:\C700\LIB

Compiler and linker: (Add -Zi to CPP_OPTS and /CO to LINK_OPTS for
debug.)

e DOS:, compiler optibnglisasessssabialen s dinsEbietom e m S
DOS_CPP_OPTS=-c -AL -BATCH -Gs

DOS_LINK_OPTS=/NOD /NOI /BATCH /STACK:5120 /SEGMENTS:256
DOS_OBJS=

--- Use the next line for UI_GRAPHICS_DISPLAY ---
DOS_LIBS=dos_zil dos_gfx ms_lgfx llibce graphics oldnames

--- Use the next line for UI_MSC_DISPLAY ---

#DOS_LIBS=dos_zil dos_msc llibce graphics oldnames

——m—- Windows compiler options -------------——=-----—----------
WIN_CPP_OPTS=-c -AL -BATCH -Gsw -DWINVER=0x0300
WIN_LINK_OPTS=/NOD /NOI /BATCH /STACK:5120 /SEGMENTS:256
WIN_OBJS=

WIN_LIBS=win_zil libw llibcew oldnames

CPP=cl
LINK=1ink

.cpp.obj:
$(CPP) $(DOS_CPP_OPTS) $<

.Cpp.obw:
$ (CPP) $(WIN_CPP_OPTS) -Fo$*.obw $<

$ o—--m- 15)0)- N S
dos: generic.exe

generic.exe: generic.obj

$ (LINK) $(DOS_LINK_OPTS) @<<zil.rsp
$ (DOS_OBJS) +generic.obj
$*,NUL, $ (DOS_LIBS) ,NUL
<<

| m=Ehe WINdows ===—imms - sfm s s e S e s s — ——— o m S — s omm e s
windows: wgeneric.exe

374 Zinc Application Framework — Programming Techniques

wgeneric.exe: generic.obw

S (LINK) S(WIN_LINKhOPTS) @<<zil.rsp
$(W1N_OBJS)+generic.obw
$*,NUL,$(WIN_LIBS),wgeneric.def

<<

rc -30 -k wgeneric.rc S* . exe

Here is a sample “generic” makefile for Windows NT:

R General Definitiong-----—_ B e TR =S
!include <ntwin32.mak>

VERSION=winnt

----- Windows compller eptiom-—to-tosaiiil UK Lsieln i L
WJN_CPP:$(CC)

WIN_LLNKtS(link)

WIN_L[BRARIAN:lib

WIN_CPP_OPTS:s(cﬂags) $ (cvars)

#WTN_CPP_OPTS:$(CﬂagS) $(cvars) /zi

HW[N_LINK_OPTS:$(conﬂags)

WIN‘LINK_OPTS:S(guiﬂags)

#WIN_LTNK_OPTS:$(QUiﬂags) /DEBUG:MAPPED,FULL /DEBUGTYPE : CV
#WIN_LIB_OPTS:/maChine:i386 /subsystem: CONSOLE
WIN_LIBEOPTS:/maChjne:1386 /subsystem:WINDOWS

WIN_OBJS=

HWJN_LlBS:$(Con1ibs) wnt_zil.lib

W]N;LTBS:$(guilibs) wnt_zil.lib

.SUFFIXES : . CPpp

.Cpp.obj:
S(WTN_CPP) $(WTN_CPP_OPTS) $<

wgeneric.exe: generic.obj
$ (WIN_LINK) $(WIN_LTNK_OPTS) -out :wgeneric.exe $ (WIN_OBJS) generic.obj
$(WTN_LIBS)

Zortech

The following Zinc libraries are for use with Zortech:

* DOS_ZIL.LIB (basic DOS library)

* D32 _ZIL.LIB (32-bit DOS library)

* DOS_GFX.LIB (DOS UI_GRAPHICS_DISPLAY)

* D32_GFX.LIB (DOS UI_GRAPHICS_DISPLAY for 32-bit DOS extender)

* ZT_LGFX.LIB (Zortech-specific GFX graphics library)

Appendix A — Compiler Considerations 375

e ZT_32GFX.LIB

e DOS_FG.LIB
e WIN_ZIL.LIB

e 0S2_ZIL.LIB

(Zortech-specific GFX graphics library for 32-bit DOS

extender)
(DOS UI_FG_DISPLAY)
(MS Windows library)

(IBM OS/2 library)

The following table lists the types of applications that can be built using Zortech and Zinc

and the Zinc libraries that

are required for each:

Type of application

Required libraries

e —————————————]

Comments

DOS with FG DOS_ZIL.LIB Must also link in FG.LIB
(also supports text mode) DOS_FG.LIB
DOS with GFX DOS_ZIL.LIB Must not link in FG.LIB
(also supports text mode) DOS_GFX.LIB

ZT_LGFX.LIB
DOS 32-bit with GFX D32_ZIL.LIB Must not link in FG.LIB
(also supports text mode) D32_GFX.LIB

ZT_32GFX.LIB

Windows

WIN_ZIL.LIB

0S72

0S2_ZIL.LIB

Before using the makefile the following may need to be changed:

e Change the environment variable for your include files’ path by entering set
include=, followed by the paths for your Zortech include files and your Zinc
include files. For example, if your include files are all on Drive C, enter:

set include=.;C:\ZINC\INCLUDE;C:\ZORTECH\INCLUDE

« Change the environment variable for the libraries by entering set 1ib=, followed
by the paths for your Zortech libraries and your Zinc libraries. For example, if your
libraries are all on Drive C, enter:

set 1lib=.;C:\ZINC\LIB\ZTCPP300;C:\ZORTECH\LIB

376

Zinc Application Framework — Programming Techniques

NOTE: Probably the easiest place to change the environment variables is in your
AUTOEXEC.BAT file.

For information on building applications with DOS-extenders, please see the READ.ME
file.

Workbench (ZWB)

To compile multi-module DOS, Windows 3.X or OS/2 2.X applications in the ZWB, the
following options must be selected within the ZWB:

e First create a makefile according to the description in the section below.

e Select CompilelMake Options.
Enter -fzortech.mak <platform> where <platform> is DOS, WIN-
DOWS or OS2, as desired.

¢ Select CompilelMake

To compile single-module DOS, Windows 3.X or OS/2 2.X applications in the ZWB, the
following options must be selected within the ZWB:

* Select CompilelCompile OptionslCode Generation.
Choose the Large Memory Model.
In the Command Line field, enter the appropriate libraries, as shown in the table
above.
Choose OS Support of DOS, Windows or OS/2, as desired.
Choose More and set Structure Alignment to Byte.

Makefiles

Each tutorial program has a sample makefile, ZORTECH.MAK, that can be used as a
template for other programs. The options listed next to CPP_OPTS in the makefile are
recommended by Zinc. The makefile can be run by typing the following:

make -fzortech.mak dos (for DOS)
make -fzortech.mak windows (for Windows)
make -fzortech.mak os2 (for 0S/2)

* In order to compile Microsoft Windows applications, you must be using Microsoft
Windows Version 3.X. All of the options specified in the Zortech sample makefile

Appendix A — Compiler Considerations 377

must be used. In addition, the -W2 compiler option, which compiles the application
as a Windows executable program, must be included.

» The appropriate Zinc .LIB files, as shown in the table above, should be linked in.

Here is a sample “generic” makefile:

GENERIC makefile

make -fzortech.mak dos (makes the DOS generic program)
| # make -fzortech.mak windows (makes the Windows generic program)
| # make -fzortech.mak os2 (makes the 0S/2 generic program)
| # Be sure to set the LIB and INCLUDE environment variables for Zinc, e.g.:
: # set INCLUDE=.;C:\ZINC\INCLUDE;C:\ZTC\INCLUDE
i set LIB=.;C:\ZINC\LIB\ZTCPP300;C:\ZTC\LIB
; ## Compiler and linker: (Add -g to CPP_OPTS and /CO to LINK_OPTS for debug.)

£

————— DOS. compiler OpLiong ——smr—=cmsmms e e s e e
DOS_CPP=ztc

DOS_LINK=blinkx

DOS_LIBRARIAN=zorlibx

DOS_CPP_OPTS=-c -al -bx -ml

DOS_LINK_OPTS=/NOI

DOS_OBJS=

--- Use the next line for UI_GRAPHICS_DISPLAY ---
DOS_LIBS=dos_zil dos_gfx zt_lgfx

--- Use the next line for UI_FG_DISPLAY ---
#DOS_LIBS=dos_zil dos_fg fg

---—- Windows compiler optiong--s-=-=-=--———c——cmmmmmm— oo
WIN_CPP=ztc

WIN_LINK=blinkx

WIN_LIBRARIAN=zorlibx

WIN_CPP_OPTS=-c -al -bx -ml -W2
WIN_LINK_OPTS=/NOI

WIN_OBJS=

WIN_LIBS=win_zil

fbr s pmss 0872 .comPiler QP ERIOIE = i i i it i i i i
082_CPP=ztc

0S2_LINK=blinkos2

0S2_LIBRARIAN=zorlib

0S2_CPP_OPTS=-¢ -mf
0S2_LINK_OPTS=/BASE:0x10000 /PM:PM
0S2_0OBJS=

0S2_LIBS=0s2_zil

.c¢.obj:
$ (DOS_CPP) $(DOS_CPP_OPTS) $<

.Cpp.obj:
$ (DOS_CPP) $(DOS_CPP_OPTS) S<

.c.obw:
$ (WIN_CPP) $(WIN_CPP_OPTS) -o$*.obw S$<

.Cpp.obw:
$ (WIN_CPP) $(WIN_CPP_OPTS) -o$*.obw $<

378 Zinc Application Framework — Programming Techniques

.Cc.obo:
$(0S2_CPP) $(0S2_CPP_OPTS) -o0$*.obo S$<

.Cpp.obo:
$(0OS2_CPP) $(0S2_CPP_OPTS) -o$*.obo S$<

dos: generic.exe

generic.exe: generic.obj
$ (DOS_LINK) $ (DOS_LINK_OPTS) $ (DOS_OBJS) +generic.obj, $*,
$ (DOS_LIBS) ,NUL

windows: wgeneric.exe

wgeneric.exe: generic.obw
S (WIN_LINK) $(WIN_LINK_OPTS) $ (WIN_OBJS) +generic.obw, $*, ,
$ (WIN_LIBS),wgeneric.def
rc -k wgeneric.rc $*.exe

0s2: ogeneric.exe

ogeneric.exe: generic.obo
$ (0S2_LINK) $(0S2_LINK_OPTS) $(OS2_OBJS)+generic.obo,$*, ,
$(0S2_LIBS),ogeneric.def
rc ogeneric.rc $*.exe

Motif

Notes on using Motif

The Motif version of Zinc Application Framework was developed for Motif version 1.1
and the X Window System version 11R4. Whenever possible, the library is made
compatible with Motif version 1.0 and X11R3, so it should not be difficult to port to
systems that do not yet support version 1.1. For example, rather than using
XtVaSetValues(), the older combination of XtSetArg() and XtSetValues() is often
used. Zinc Application Framework has been compiled and run on systems with Motif 1.2
and X11R5 with only very minor changes.

Since there are so many different Motif systems in use, Zinc cannot provide makefiles and
instructions for every system. The Motif version of Zinc Application Framework is
provided only in source code form and not as a previously compiled library. As a result,
each site will need to compile its own library. The next section should make it easier to
‘tailor’ the makefiles to your specific system.

NOTE: Some implementations of X-Windows use ‘“class” and “new” for variable
names and so are not compatible with C++ (and subsequently are not compatible with
Zinc Application Framework). A different version of X-Windows should be obtained in
these situations.

Appendix A — Compiler Considerations 379

Makefiles

Each tutorial program has a sample makefile, Makefile, that can be used as a template
for other programs. The makefile can be run by typing the following:

make

Before using the makefile the following may need to be changed:

+ Change the compiler’s include file search path. By default, the Zinc source for Motif
assumes that the Motif include files are in a directory called Xm, and that the Xt and
X include files are in a directory called X11. The parent directory of Xm and X11
must be in your compiler’s include search path. If, for example, the include files are
located in /usr/include/Motif1.1/Xm and the Xt and X include files are located in
/usr/include/X11R4/X11, the following should be added to the makefile:

-I/usr/include/Motifl.1 -I/usr/include/X11R4

e Change the compiler’s library file search path. Zinc applications need to be linked
with the Motif version of Zinc Application Framework, libXm.a, the Xt library,
libXt.a, and the X Window library libX11.a. To inform the linker of the location of
these files use a command similar to the following:

-L/usr/lib/Motifl.1 -1Xm -L/usr/lib/X11R4 -1Xt -1X11

NOTE: By default, the Zinc installation program will install the Zinc include files to
/usr/include and the library files to /usr/lib.

Here is a sample ‘“‘generic”’ makefile:

PROGS = generic

CXXFLAGS= -g -I../../include -I/usr/include/X11R4 -I/usr/include/Motifl.1l
E?ééSSfL../../lib -1_mtf_zil -L/usr/lib/Motifl.l -1Xm -L/usr/lib/X11R4 -1Xt
-1X11 -lcodelibs -1lc /usr/lib/end.o

motif: generic

generic: generic.o
$(CXX) $(LFLAGS) -o $@ $? $(LIBS)

clean:
-rm -f generic *.o

380 Zinc Application Framework — Programming Techniques

Porting to another system

When Zinc is ported to additional Motif systems, various differences may occur. The
Zinc include file, UI_ENV.HPP, specifies environment specific macros and declarations.
There are three main defines that are of interest. The following defines should be
verified:

e either ZIL_LITTLEENDIAN or ZIL_BIGENDIAN must be defined
e either ZIL_BITS16 or ZIL_BITS32 must be defined
e ZIL_LOAD_MOTIF must be defined. (NOTE: ZIL_LOAD_MOTIF is a macro that

causes ZIL_MOTIF and ZIL_X11 to be defined according to values in the Zinc
Application Framework and X include files.)

Appendix A — Compiler Considerations 381

Zinc Application Framework — Programming Techniques

APPENDIX B — EXAMPLE PROGRAMS

Zinc Software continually improves and updates example programs that provide additional
help for programmers on particular library topics. The following list describes the
example programs that are available in the Zinc Application Framework examples
directory. For additional updates and examples, keep in contact with our Bulletin Board
Service and the Zinc Software technical support group.

All example programs are located in individual sub-directories under \ZINC\EXAMPLE.
An explanation of the files contained in each directory is given below:

*.CPP—These files contain the source code for the example program.

*HPP—These files (if any) contain class definitions and constants used by the
example program.

* TXT—These files (if any) can be used with the GENHELP.EXE utility to add
help contexts to a new or existing .DAT file.

*.DAT—These files (if any) contain any persistent window objects (created with Zinc
Designer) used in the example.

*.DEF, *.RC—These files (if any) are the environment specific definition and
resource files required when compiling for Windows or 0S/2. (NOTE: The W,
files are for Windows and the O*.* files are for 0S/2.)

*.MAK—These files are the compiler-dependent makefiles associated with the
example program. (See “Chapter 1—Initializing the Library” for information on
compiling for each Zinc-supported platform.)

ANALOG

This program displays a constantly updating, sizeable analog clock to the graphics display.
This is accomplished by implementing a multiple inheritance class derived from
UI_DEVICE and UIW_WINDOW.

Concepts demonstrated: multiple inheritance, derived devices and graphics.

Appendix B — Example Programs 383

BIO

This program uses a class derived from UI_WINDOW_OBJECT to display sine wave
representations of a person’s biorhythm in the lower portion of a window while allowing
the user to enter date information in the upper portion of the window. The window is
sizeable, and the sine wave graphics are dynamically sized within the window by use of
the WOF_NON_FIELD_REGION flag.

Concepts demonstrated: non-field region objects and graphics.

CALC

This program uses a CALCULATOR class derived from UIW_WINDOW to display a
calculator, which consists of a UI'W_REAL class object and several UIW_BUTTON class
objects inside of a window. This program demonstrates how to attach user functions to
UIW_BUTTON class objects and how to call a non-static class member function from a
static user function.

Concepts demonstrated: UIW_REAL usage, calling non-static member functions.

CALENDAR

This program creates a sizeable calendar for which the spacing of the days and weeks is
dynamically changed according to the size of the calendar. This is accomplished by
deriving classes from UI_WINDOW_OBJECT and UIW_WINDOW.

Concepts demonstrated: ~dynamically sizing window objects, UI_DATE usage, using a

custom event map table.

CHECKBOX

This program demonstrates the use of checkboxes and radio buttons (UIW_BUTTON
class).

Concepts demonstrated: ~checkbox usage, radio button usage, user functions and setting
default selected status.

384 Zinc Application Framework — Programming Techniques

CLOCK

This program displays a constantly updating digital clock to the graphics or text display.
This is accomplished by implementing a multiple inheritance class derived from UI -
DEVICE and UIW_WINDOW.

Concepts demonstrated: ~ derived UI_DEVICE class and multiple inheritance.

COMBOBOX
This program demonstrates the use of the U'W_COMBO_BOX class.

Concepts demonstrated: combobox usage, user functions and setting the default selected
status.

DIRECT

This program displays filenames as UIW_STRING class objects attached to a
UIW_VT_LIST class object. The program allows the user to change directories by
selecting UITW_STRING class objects which are attached to a UIW_VT_LIST class object.
If the user double-clicks on a file name, the UIW_STRING class object will call a user
function that will display the file name, file size and file date in a window.

Concepts demonstrated: file access, directory manipulation, U'W_VT_LIST usage and
user functions.

DRAW

This program creates an icon builder/editor similar to the editor in Zinc Designer. A new
object, UIW_BITMAP, is defined.

Concepts demonstrated: graphics, UIW_ICON usage and UIW_BITMAP class created.

DISPLAY

This program demonstrates the functionality of the UI_BGI_DISPLAY, UI -
FG_DISPLAY, UI_MSC_DISPLAY, UI_TEXT_DISPLAY and UI_MSWINDOWS. -
DISPLAY classes. The program uses the RegionDefine(), Rectangle(), Text() and
TextWidth() member functions to draw graphics information to the screen.

Appendix B — Example Programs 385

Concepts demonstrated: ~ graphics and using various graphics modes.

ERROR

This program demonstrates how the UI_ERROR_SYSTEM can be called from a user
function.

Concepts demonstrated: UI_ERROR_SYSTEM features and usage.

FILEEDIT

This program implements a file text editor complete with directory and file manipulation
functionality. This program uses classes derived from the UIW_WINDOW class. It also
uses the UI_HELP_SYSTEM class.

Concepts demonstrated: ~file access, directory manipulation, UIW_VT_LIST usage, user
functions and UIW_TEXT usage.

FREESTOR

This program implements a free store exception handler. When the new() operator fails
to allocate memory, Freestor can be used to allow the user application to recover
gracefully. (NOTE: This example program is for DOS only.)

Concepts demonstrated: out of memory detection.

GRAPH

This program displays line graphs, bar graphs and pie graphs inside of several overlapping
windows.

Concepts demonstrated: ~derived graphic window objects and graphics in various
environments.

MESSAGES

This program displays two buttons in a window. If either button is pressed, a menu
window appears, displaying several options. If any of the options in the menu window
are selected, the menu window will disappear, and the selected option’s text will appear

386 Zinc Application Framework — Programming Techniques

on the button that was originally selected. This is accomplished by using a class derived
from UIW_BUTTON which understands a programmer-defined event type. A
UI_EVENT class object of this type then uses its ‘data’ member to point to the new
character array.

Concepts demonstrated: sending messages to specific objects.

PERIODIC

This program creates a periodic table of elements.

Concepts demonstrated: ~ Zinc Designer integration and user functions.

PHONEBK

This program implements a phone number storage/retrieval system. It uses the
UI_STORAGE and UI_STORAGE_OBJECT classes to save the phone number entries in
the Zinc data file.

Concepts demonstrated: using the Zinc data file and user functions.

PUZZLE

This program creates a “15’s” puzzle using a class derived from UIW_WINDOW and
a group of UIW_BUTTON class objects.

Concepts demonstrated: sizing of button objects and changing of button appearance.

SPY

This program displays the textual representation of event types in a window as the events
occur in a typical Zinc application. This is accomplished by deriving an Event Manager
class from the U_EVENT_MANAGER class. This class prints the first message on the
queue each time eventManager->Get() is called. The textual representation of each event
it output to a TTY_WINDOW.

Concepts demonstrated: derived UIW_EVENT_MANAGER, “scrolling” TTY_-
WINDOW and event translation.

Appendix B — Example Programs 387

VALIDATE

This program attaches a validate function to several UIW_BIGNUM class objects in order
to display the sum of these objects in an additional non-selectable UIW_BIGNUM class
object. This program demonstrates how to call a non-static class member function using
a static validate function.

Concepts demonstrated: ~calling non-static functions and UIW_BIGNUM usage.

388 Zinc Application Framework — Programming Techniques

APPENDIX C - ZINC CODING STANDARDS

Zinc Software has an internal document that specifies standards for all code written for
internal, as well as external, distribution. The purpose of these standards is to improve
the readability, organization and maintenance of source code and header files. This
document is printed in this appendix so that you can understand the coding standards we
use when writing the example programs, tutorial programs and source code modules you
receive when you purchase this product.

Naming

Classes and structures

Class names should be self-explanatory and should be in upper-case lettering, with
underscores used to separate words. Some example class and structure names are shown
below.

struct UI_EVENT

struct UI_PALETTE_MAP

class UI_ELEMENT

class UI_EVENT_MANAGER : public UI_LIST

class UIW_BUTTON : UI_WINDOW_OBJECT

In addition, the following prefixes are used in conjunction with Zinc Application
Framework:

UL is used to denote a general user interface class object or structure.
UID_ is used to denote a device class object or structure.

UIW_ is used to denote a window interface class object or structure.

Functions

Functions should be self explanatory and should be in name-case format (i.e., first letter
upper-case lettering, all remaining character in lower-case lettering) with no underscores
used to separate words. In addition, the function name should describe the operation that
is performed by the function.

Appendix C — Zinc Coding Standards 389

Some example class and regular function names are shown below:

UI_ELEMENT *Previous (void) ;
EVENT_TYPE Event (const UI_EVENT &event) ;

static UI_WINDOW_OBJECT *New (const char *name, UI_STORAGE *directory,
UI_STORAGE_OBJECT *object);

Variables

Variable names should be self-explanatory and should be in lower-case lettering for the
first word, then be name-case for each word thereafter. Global variables should be
preceded by an underscore. Some example variable names are shown below.

extern UI_STORAGE *_storage;
int UIW_BORDER::width = 4;
static UI_EVENT_MAP *eventMapTable;

UI_PALETTE_MAP *paletteMapTable;

Each variable should be declared on a separate line when it is needed by the function.
When declaring a list of variables, the following order should be followed:

1—External variables
2—Static variables
3—Variables with complex structures
4—All other variables according to need within the application
In addition, only one space (not tabs) should exist between the type and the variable.

Comments should be aligned evenly after the variable list.

Constants

Constant variables should be self-explanatory and should be in upper-case lettering, with
an underscore separating the words.

Some example constant names are shown below:

const int TRUE

1;
const int FALSE 0;

390 Zinc Application Framework — Programming Techniques

const WOF_NO_FLAGS WOF_NO_FLAGS
const WOF_NO_FLAGS WOF_JUSTIFY_ CENTER

0x0000;
0x0001;

i n

In addition to the information described above:

* Constants should be placed before the definition of the class for which they apply,
or at the beginning of the module.

* If several related constants are defined, the definitions should be grouped together
with a preceding comment.

* Constant values should be tab aligned to the right.

* Comments for each line, if needed, should be aligned to the right of the value.

Organization

Class scopes

The declaration of a class in an include file should list public members first, protected
members next and private members last. Each major section should list static member
variables first, member variables next and member functions last, listed in alphabetical
order. (The constructor and destructor should be listed first.) In addition, each scope
section should contain a short comment telling where its members are documented. The
following example shows a class containing the three scope sections:

class EXPORT UI_TIME : public UI_INTERNATIONAL
{
public:

static char *amPtr;

static char *pmPtr;

UI_TIME (void) ;
virtual ~UI_TIME(void);

void Export (char *string, TMF_FLAGS tmFlags) ;

long operator=(long hundredths) ;
private:

long value;

}i

Appendix C — Zinc Coding Standards 391

Files

Source code modules that contain class member functions should contain the copyright
notice, then any include files, followed by static member variables, and finally, member
functions, described in alphabetical order. An example of BORDER.CPP file layout is
shown below:

// Zinc Application Framework - BORDER.CPP
// COPYRIGHT (C) 1990-1993. All Rights Reserved.
// Zinc Software Incorporated. Pleasant Grove, Utah USA

#include "ui_win.hpp"
#include <string.h>

int UIW_BORDER::width = 4;
UIW_BORDER: : UIW_BORDER (void)

UI_WINDOW_OBJECT (0, 0, 0, 0, WOF_NON_FIELD_REGION, WOAF_NON_CURRENT)
{

}

UIW_BORDER: : "UIW_BORDER (void)
{

}

EVENT_TYPE UIW_BORDER::Event (const UI_EVENT &event)
{

Comments

Files

Each source file (.CPP or .HPP) should contain a three line comment that contains the
library or program name, the name of the file and copyright information. A sample
header is shown below:

// Zinc Application Framework - BUTTON.CPP
// COPYRIGHT (C) 1990-1993. All Rights Reserved.
// Zinc Software Incorporated. Pleasant Grove, Utah USA

392 Zinc Application Framework — Programming Techniques

The copyright information should be copied as shown above. The copyright year should
include the original year when the product was created and all subsequent years when
major revisions were made.

Functions

Each routine may be preceded by a short description giving the routine’s purpose and any
related algorithms. If the routine name intuitively describes the routine, no comment is
needed. The example below shows the use of a function comment:

// This member function displays the biorhythm information in the window.
// As the size of the window object changes (by changing the parent window)
// the size of the biorhythm chart also changes. A horizontal change

// results in a change in the number of days displayed. A vertical change
// results in a dynamic change in the height of the biorhythm curve.

void BIORHYTHM: :UpdateBiorhythm ()

{

Variables

Function arguments and local variables should only have descriptive comments if their
names are not descriptive. These comments should be lined up on a right tab region. In
addition, all comments should start with a capital letter and be followed by a period. An
example of three variable declarations is shown below.

EVENT_TYPE ccode; // The control code for an event.
long fileOffset;

int cardfile; // File handle for the disk file.

Blocks

Block comments are used to describe a group of related code. Most block comments
should be one line, if possible, and reside immediately above the block being commented.
If more than a one line comment is needed, the extra lines should each begin with the
double slash.

Block comments should be indented to match the indentation of the line of code following

it. A single blank line should precede the comment and the block of code should follow
immediately after. Small blocks of code that do a specific job should be commented but

Appendix C — Zinc Coding Standards 393

not individual lines (unless the line is complex or not intuitive). Some example block
comments are shown below.

// Destroy all of the items within the list.
Destroy () ;

// When the user selects a button from the current window, ccode
// is checked to see what type of event was received.
switch (ccode)

IO RO, ...l

Classes and structures

Structures and classes should have all members listed on individual lines and should be
indented with one tab from the left margin. Several sample indentations are shown below:

class EXPORT UI_DEVICE : public UI_ELEMENT
{

friend class EXPORT UI_EVENT_MANAGER;
public:

static ALT_STATE altState;
static UI_DISPLAY *display;
static UI_EVENT_MANAGER *eventManager;

int installed;
DEVICE_TYPE type;
DEVICE_STATE state;

virtual ~UI_DEVICE (void);
virtual EVENT_TYPE Event (const UI_EVENT &event) = 0;

// List members.
UI_DEVICE *Next (void);
UI_DEVICE *Previous (void);

protected:
UI_DEVICE (DEVICE_TYPE _type, DEVICE_STATE _state) ;

static int CompareDevices (void *devicel, void *device2);
virtual void Poll (void) = 0;

i

Fe

Functions
The main body of routines should have braces below the function declaration. All

function code should be indented one tab. An example of this indentation is shown
below:

394 Zinc Application Framework — Programming Techniques

void UIW_BUTTON: :DataSet (const char *string)
{
// Reset the button’s string information.

Function calls

Parameters in a function call should be listed with each argument, followed by a comma
and one space. If a routine call cannot fit on one line on the screen, it should be broken
with the next half of the call indented one tab farther over. It should be split after a
comma or logic symbol if possible. Several examples of this calling convention are
shown below:

UIW_WINDOW *UIW_WINDOW: :Generic (int left, int top, int width, int height,
char *title, UI_WINDOW_OBJECT *minObject, WOF_FLAGS woFlags,
WOAF_FLAGS woAdvancedFlags, UI_HELP_CONTEXT helpContext)

// Create the window and add default window objects.
UIW_WINDOW *window = new UIW_WINDOW(left, top, width, height,
woFlags, woAdvancedFlags, helpContext, minObject);

}

UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6, "Hello World window",
NULL, WOF_NO_FLAGS, WOAF_NO_FLAGS, HELP_HELLO_WORLD) ;

// Add the window objects to the window.
*window
+ new UIW_TEXT(0, 0, 0, 0, "Hello, World!", 256,
WNF_NO_FLAGS, WOF_NON_FIELD_REGION) ;

Case statements

The reserved word case should be aligned with the switch statement, but all code
information should be indented an additional tab. Each additional level of logic should
be indented one tab. The colon should immediately follow each case and the statement(s)
should start on a new line. The break should also be on a separate line. An example of
this organization is shown below:

EVENT_TYPE UIW_PROMPT: :Event (const UI_EVENT &event)
{

// Switch on the event type.

EVENT_TYPE ccode = event.type;

switch (ccode)

{

Appendix C — Zinc Coding Standards 395

case S_CREATE:
case S_SIZE:

break;

case S_CURRENT:
case S_NON_CURRENT:
case S_DISPLAY_ACTIVE:
case S_DISPLAY_INACTIVE:
if (UI_WINDOW_OBJECT: :NeedsUpdate (event, ccode))

UI_WINDOW_OBJECT: : Text (prompt, 0, ccode, lastPalette);
break;

default:

ccode = UI_WINDOW_OBJECT: :Event (event) ;
break;

}

// Return the control code.
return (ccode);

If and for statements

Statements following an if or for should be indented one tab, and simple conditionals
should use the in-line ? operator. An example of these statements is shown below:

left = (left < 1) ? 1 : right;
if (event->type == E_KEY &&
(event->rawCode == ESCAPE || event->rawCode == BACKSPACE |1
event->rawCode == ENTER))
{
offset = length;
length = 0;

for (number = 0; number < noOfCalls; number++)
; // Do nothing.

The braces enclosing the block should be aligned with the “if”” or “for.” If no statement
exists for the “for” loop, the semicolon should be placed on the next line.

Multi-line equates
Each multi-line equate should be listed on a separate line as shown below:

windowID[0] =
windowID[1]
windowID[2]
windowID[3]
windowID[4]

ID_WINDOW_OBJECT;

Each of the successive equates is indented one tab more than the first.

396 Zinc Application Framework — Programming Techniques

APPENDIX D — QUESTIONS AND ANSWERS

This appendix addresses some of the most frequent questions addressed by the technical
support group. Each question is addressed in the form of a question and a short answer,
with the concept being identified in the side title.

Ahhl...getting help

Question: What technical support services does Zinc offer?

Answer: Zinc currently offers the following technical support services to registered
users at no charge:

United States

e Telephone support:
(801) 785-8998, 8:00 a.m. to 5:00 p.m. Mountain Standard Time

e BBS:
(801) 785-8997, 9600 V.32 bis (8,N,1), 24 hours
(801) 785-8995, 9600 HST dual standard (8,N,1), 24 hours

* FAX:
(801) 785-8996, allow 2-5 business days for a response. If you
need to send more than one page of code, please use the BBS.

Europe

e Telephone support:
+44 (0)81 855 9918, 9:00 a.m. to 5:00 p.m. London Time

e BBS:
+44 (0)81 317 2310, 9600 HST dual standard (8,N,1), 24 hours

* FAX:
+44 (0)81 316 7778, allow 2-5 business days for a response. If
you need to send more than one page of code, please use the
BBS.

Appendix D — Questions and Answers 397

Bitmaps/icons not displaying

Question: When a window with bitmaps or icons is loaded from a .DAT file, the
bitmap images are not displayed. What is wrong?

Answer: Windows can be loaded from a .DAT file using code similar to the
following:

UIW_WINDOW *window = new
UIW_WINDOW ("file_name.dat~window_name") ;

When the library loads bitmaps, it does so from the UI_STORAGE object
specified by UI_WINDOW_OBJECT::defaultStorage. 1f UI_WINDOW_-
OBJECT: :defaultStorage is NULL (i.e., it has not been initialized), the
bitmap images cannot be loaded. UI_WINDOW_OBJECT::defaultStorage
can be initialized according to the following code:

UI_WINDOW_OBJECT: :defaultStorage = new
UI_STORAGE ("file_name.dat");

UIW_WINDOW *window = new UIW_WINDOW (2, 2, 50, 15);
// Add minimize icon and bitmapped button.
*window
+ new UIW_ICON(O0, 0, "myIcon", "Window",
ICF_MINIMIZE_OBJECT)
+ new UIW_BUTTON(1, 1, 15, "Press here", BTF_NO_TOGGLE |
BTF_AUTO_SIZE, WOF_NO_FLAGS, PressFunct ion, O,
"PRESS_BITMAP") ;

Changing object flags

Question: How can the flags of an object be changed after the object has been
constructed?

Answer: The |= operator can be used to set flags, the &= operator to clear flags and
the A= operator can be used to toggle flags. The following example code
shows how this is accomplished:

// Set the non-current flag of an object.
object->woAdvancedFlags |= WOAF_NON_CURRENT;

// Clear the auto-clear flag of an object.
object->woFlags &= “WOF_AUTO_CLEAR;

// Toggle the selected status of an object.
object->woStatus "= WOS_SELECTED;

398 Zinc Application Framework — Programming Techniques

Changing the map tables

Question:

Answer:

How can changes be made to the global event map table and/or to the global
palette map table at compile time?

Edit the files G_EVENT.CPP and/or G_PNORM.CPP and include them
in the project before the Zinc library file, and they will override the default
tables included in the library. (NOTE: The palette map table can only be
changed for DOS programs.)

Checking for selected objects

Question:

Answer:

How can the program determine if an object is in the selected state? (e.g.
check box on, radio button on, etc.)

Test the woStatus of the item for the WOS_SELECTED flag. The following
code shows how this can be done:

if (FlagSet (item->woStatus, WOS_SELECTED))
{

Closing the current window

Question:

Answer:

How can the current window be closed in a user function?

In order to close the current window in a user function, the following code
can be used:

event.type = S_CLOSE;
object7>eventManager7>Put(event);

Do not use the following code in a user function:

event.type = S_CLOSE;
object—>windowManager—>Event(event);

or

*object->windowManager
- currentWindow;
delete currentWindow;

If the window is closed before leaving the user function, the window could
be deleted. If the window is deleted, the object calling the user function

Appendix D — Questions and Answers 399

will also be deleted. Then when the user function is exited, it returns to an
address which has been freed. In other words, this can be compared to
climbing out on a limb and attempting to cut out the section of the limb
between you and the main trunk. The freed memory may be corrupted—the
results are unpredictable.

Compiler warning

Question 1: I get a “result of * expression not used”” warning when compiling in Motif.

Answer:

Why?

Some compilers for Motif will produce this warning when using the
overloaded + and - operators. Typecasting the result of the operation as
follows will eliminate the warning:

(void *)&(*eventManager
+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR) ;

Display/Mouse remaining active

Question:

Answer:

Why might the display and the mouse remain active after exiting the
program, even if the program deleted them?

This can occur as a result of the ‘Word alignment’ option being set
improperly when the program is compiled.

In the Borland IDE: OptionslCompiler/Code Generation, Word alignment
must be off, Unsigned characters must be off and Treat enums as ints must
be on. Otherwise, calls to the library will be done incorrectly.

In the Zortech ZWB: CompilelCompile OptionsiCode Generation, “Align”
must be set to Byte and the CHAR == UCHAR option must be off.

Finding an object in a window

Question:

400

Given a pointer to a window, how can a pointer to an object in that window
be found?

Zinc Application Framework — Programming Techniques

Answer: The following code will get a pointer to the n™ object in a window. Similar
code will get the n" object in a list, menu or any other object derived from
window.

UI_WINDOW_OBJECT *object =
(UI_WINDOW_OBJECT *)window->UI_LIST: :Get (n);

If the object has a string ID it can be found by using the following code:

UI_WINDOW_OBJECT *object = (UI_WINDOW_OBJECT *)
window->Information (GET_STRINGID_OBJECT, stringID);

Finding the current window

Question 1: How can you determine which window is the current window attached to the
Window Manager?

Answer: The member function windowManager->First() will return a pointer to the
current window.

Question 2: Given a pointer to a window, how can the current object in that window be
found?

Answer: The member function window->Current() will return a pointer to the
current field in the window. (NOTE: That field may have sub-fields.)

Finding the parent window

Question: Given a pointer to an object in a window, how can you find the parent
window?

Answer: Given a pointer to an object, such as in a user function, the following loop
will exit with a pointer to the parent window named parentWindow:

for (UI_WINDOW_OBJECT *parentWindow = object;
parentWindow->parent; parentWindow = parentWindow->parent)

i

Fix-up overflow errors

Question: What causes fix-up overflow errors?

Appendix D — Questions and Answers 401

Answer: Fix-up overflow indicates that the .OBJ files are not linking properly with
each other or the .LIB files. This can be caused by compiling .OBJ files
in some model other than large and trying to link with Zinc Application
Framework (which was compiled for large model). It can also be caused by
compiling the .OBJ files with one version of the compiler and trying to link
with Zinc Application Framework that compiled with another. This is
especially a problem when using a older version of a compiler. (Contact

\ Customer Support about support for previous versions of compilers.)

. International language

Question: Does Zinc Application Framework provide any international language
support?

Answer: Zinc uses the country information provided by the operating system to
determine the appropriate format and edit controls for dates, times and
numbers. You can also build language specific data files using Zinc
Designer and pass them to your application depending on the country
information.

Making a window current

Question: How can a different window be made to be the current window?

Answer: Add the window to be current to the Window Manager. The following code
shows how this can be done:

*windowManager + windowl;

“Out-of-memory” compiler errors

Question: What causes ‘Out of Memory’ errors when compiling Zinc Application
Framework programs?

Answer: Two things can cause this error. First, the source file could be too large for
the compiler to handle. If so, the source file needs to be broken into smaller
modules. Also, stringing too many add operations can cause the compiler
to run out of memory during the compile. The example below shows how
this can be accomplished:

*window + objectl + object2 + + object20;

402 Zinc Application Framework — Programming Techniques

could be written as:

*window + objectl + object2 + object3 + objectd;
*window + object5 + object6 + object7 + object8;
*window + object9 + objectl0 + objectll + objectl2;
*window + objectl3 + objectl4 + objectl5 + objectl6;
*window + objectl7 + objectl8 + objectl9 + object20;

Preventing the modification of objects

uestion: How can a window object be changed to be non-selectable in order to
) g
prevent users from being able to change it?

Answer: The WOF_VIEW_ONLY or the WOF_NON_SELECTABLE flags can be
set by using one of the following lines of code:

object->woflags |= WOF_VIEW_ONLY;
object->woflags |= WOF_NON_SELECTABLE;

The same flags could be turned off again with the following code:
object->woflags &= ~“WOF_VIEW_ONLY;
object->woflags &= ~“WOF_NON_SELECTABLE;
Putting a single object in multiple windows

Question: Why can’t a single instance of an object be added to two different windows?

Answer: Each object derived from UI_ELEMENT has pointers included in the class
so that it can be placed in a UI_LIST. Because there is only one copy of
these pointers, it can only be placed in one list. If you try to put an object
into a second list, without subtracting it from the first list, the pointers are
overwritten, and the first list becomes corrupt. This can result in the system
hanging.

Re-displaying objects and windows

Question: How can a window object or an entire window be re-displayed?

Answer: To re-display a window object, it must be sent the S_REDISPLAY message.

object->Event (UI_EVENT (S_REDISPLAY)) ;

Appendix D — Questions and Answers 403

Royalties

Question:

Answer:

Question:

Answer:

Question:

Answer:

404

To re-display an entire window, including all of the objects attached to the
window, send the window an S_REDISPLAY message.

If I build an application with Zinc Application Framework, can I distribute
it without having to pay Zinc any royalties?

You can distribute your application royalty-free as long as: 1) it bears a
valid copyright notice, 2) it is not a library-type product, software
development tool or operating system, and 3) it is not competitive with or
used in lieu of Zinc. (Please refer to the Zinc Application Framework End
User License Agreement.)

Undetected graphics mode

Why might a DOS program not run in graphics mode, even when a graphics
monitor is being used?

In order to run in graphic mode, Borland’s .BGI (Borland Graphics
Interface) files must be found if the program uses BGI graphics. When
using the UI_BGI_DISPLAY, DOS will search in the directories stated in
the APPEND, and Zinc will search for them in the directories stated in the
PATH environment variable. Otherwise, the graphics driver will not be
installed, and the program will run in text mode only. (See the UTIL.DOC
file that came with the Borland compiler for details on linking BGI graphics
drivers into your application.)

For applications using MSC graphics to run in graphics mode, Microsoft
JFON files must be in the environment’s PATH.

Using the Q_NO_BLOCK flag

If the Q_NO_BLOCK flag is used when calling eventManager->Get(),
how can it be determined if a valid event was received, or if no events were
in the event queue?

If the Q_NO_BLOCK flag is set, the return value from eventManager->
Get() will be zero if an event was detected: otherwise, it will be a negative

value (i.e., -1 or -2). The example below shows how you can check the
status:

Zinc Application Framework — Programming Techniques

UI_EVENT event;

EVENT_TYPE ccode = eventManager->Get (event, Q_NORMAL |
Q_NO_BLOCK) ;

if (ccode == 0) // An event was returned.

else // An event was not present.

Using member functions as user functions

Question: How can a member function be used as a user function?

Answer: A member function must be declared as static in order to be used as a user
function. (See the VALIDATE example for a demonstration of a static user
function calling a non-static user function.)

Using .ICO and .BMP files

Question: How can previously created, .ICO or .BMP files be use with Zinc
Application Framework?

Answer: Zinc Designer contains a utility to import .ICO and .BMP files. The icons
and bitmaps can then be saved in a .DAT file. A utility program called
ICON2DAT.EXE may also be used to convert .ICO and .BMP files.

Appendix D — Questions and Answers 405

Programming Techniques

Zinc Application Framework

©O
(=]
<

INDEX

.BMP
importing in Designer 351

A

absolute value
floating point numbers 196
integers 196

abstraction 216

accelerator keys
implementation of 92

argc and argv
Motif use of 14

B

base class initialization 143
BBS 5, 397
bignum
creating in Zinc Designer 288
range 289
userFunction 289
bignum (use of)
VALIDATE example program 388
bitmapped buttons 299
bitmaps
importing from .BMP 351
loading from .DAT file 398
bulletin board system 5, 397
button
bitmapped 299
check box 304
in Zinc Designer 297
radio button 301
userFunction 298
value 298

Index

C

C++ language

additional references 1
C++ programming 55
callback functions 153
check boxes

BTF_CHECK_BOX (flag) 299, 303, 306

in Zinc Designer 304

setting default options 384
child window

in Zinc Designer 321

minlcon 322
class derivation 59
classes 56, 216

object retrieval 226

object storage 224

using 58
clearing resources

in Zinc Designer 263
coding standards

Zinc standards 389
color mapping 182
combo box

compare function 315

in Zinc Designer 314
comments

Zinc use of 392
compiler considerations

Borland 367

Microsoft 371

Motif 379

Zortech 375
compiling a program 10
constructor 57
coordinates

screen 176
creating windows 67
currency

exchange rates 198

formatting 199

symbols 199

407

D

data base
Zinc interaction with 162
data entry screen
PHONEBK example program 387
data file
PERIODIC example program 387
PHONEBK example program 387
data file usage 78
data files
additional uses of 189
data hiding 57
date
in Zinc Designer 281
range 281
userFunction 282
decimal values (fixed place) 196
deleting objects
in combo-box 316
in horizontal list 313
in pop-up item 332
in pull-down item 329
in pull-down menu 326
in tool bar 336
in vertical list 310
in Zinc Designer 263
deleting resources
in Zinc Designer 264
derived classes 59
HELP_BAR 147
derived devices
ANALOG example program 383
derived display 171
designer 41, 231
destructors 57

device
Event () 145
Poll() 138

user-defined 136

device types (values) 143

devices
ANALOG example program 383
CLOCK example program 385
MACRO tutorial program 135
states of 143

408 Zinc Application Framework — Programming Techniques

directory window object
DIRECT example program 385
display
changing modes 90, 102
class initialization steps 178
color mapping 182
construction of 175
derived 171
direct screen drawing 385
drawing routines 179
initialization of 13, 24
DOS-extenders 368, 373, 377
drawing graphics 209
drawing routines
implementation of 179
Drawltem (function)
HELP_BAR definition of 153, 155

E

editing bitmaps
in Zinc Designer 343
editing resources
in Zinc Designer 262
encapsulation 216
error system 29
reporting errors 386
Event (function) 145
DOS 151
in derived classes 205
Motif 155
0S/2 154
Windows 152
event flow
DOS 70
Motif 70
0S/2 70
Windows 71
event manager
derived use of 387
initialization of 14, 24
event map table
changing 399
event mapping

of keyboard events 203
VLIST tutorial program 160
event monitor 116
event passing 70
event queue
checking events 138

events
DOS 151
Motif 155
0S/2 154

sending between windows 386
user-defined 137, 204
Windows 153

Exit 20

exit function 30

F

file conversion
.BMP to .DAT 405
ICO to .DAT 405
importing to Zinc Designer 351

file support
low-level 226

flags 269
bignum 289
button 299
check box 306
child window 323
combo box 316
date 282
formatted string 277
group 340
horizontal list 313
horizontal scroll bar 320
icon 342
integer 292
numeric 196
pop-up item 333
prompt 338
pull-down item 329
pull-down menu 327
radio button 303
real 295

Index

string 273

text 279

time 286

tool bar 336

vertical list 310

vertical scroll bar 318
foreign currency

translation 193
foreign language 185
formatted strings

compressedText 275

deleteText 276

editMask 275

editor 274

in Zinc Designer 274

specifying a user function 276

G

Generic (function)
UIW_SYSTEM_BUTTON implementation
of 32
UIW_WINDOW implementation of 32
genhelp.exe (utility)
usage 28
graphics
ANALOG example program 383
BIO example program 384
direct screen drawing 385
DRAW example program 385
drawing 209
GRAPH example program 386
graphics drivers
Zinc interface to 171
graphics.h 175
group
in Zinc Designer 339

H

help bar 147

409

help context
assigning to objects 131
field-sensitive 273, 276, 279, 282, 286,
289, 292, 295, 299, 302, 306, 309, 313,
315, 322
help editor
in Zinc Designer 355
help index
in Zinc Designer 363
help options
in Zinc Designer 363
help system 25
assigning to objects 131
calling (code example) 130
initializing 131
using GENHELPEXE 28
horizontal list
cellHeight 312
cellWidth 312
compare 312
compare function 312
in Zinc Designer 311
horizontal scroll bar
created in Zinc Designer 319
in Zinc Designer 319

icons
importing from .ICO 351
in Zinc Designer 341
loading from .DAT file 398
image editor 343
brush 354
brush size 355
clear 354
edit options 354
ellipse 355
fill 355
grid 355
importing images 351
line 354
pencil 354
rectangle 354

undo 354
include files
UI_DSP.HPP 12
UI_ENV.HPP 12
UIL_EVT.HPP 12
UI_GEN.HPP 12
UI_WIN.HPP 12
indentation
Zinc use of 394
inheritance 59
integer
editor 291
in Zinc Designer 291
range 292
userFunction 292
interactive design tool 41
international currency 193
international language 185

K

keyboard mapping 203

L

language

C vs. C++ 210
language portability 185
line drawing

image editor use of 354
list

virtual implementation of 159

loading resources
in Zinc Designer 258
local variables 61
LogicalEvent (function)
calling 204

410 Zinc Application Framework — Programming Techniques

M

macro device 135
main (function)
UI_APPLICATION class 24
main loop 18
makefiles
Borland 369
Microsoft 373
Motif 380
Zortech 377
mapping
keyboard events 203
Maximize 20
member functions
as user functions 405
message passing
between windows 386
messages
DOS 151
Motif 156
0S/2 154
Windows 153
Minimize 20
monitoring events 116
Motif
use of argc and argv 14
Motif version of Zinc
porting to other Motif systems 381
Motif widgets
integrating with Zinc 156
Move
window 20
multi-national currency
support of 193
multiple inheritance
ANALOG example program 383

N

naming convention
Zinc use of 389
New (function) 80

Index

nmFlags (variable) 196
non-field region objects
BIO example program 384

O

object
finding within a window 400
redisplaying 403
object flags
changing 398
object list
deleting from in Zinc Designer 263
re-ordering in Zinc Designer 263, 310, 313,
316, 322, 326, 329, 332, 336, 340
object retrieval 218
object size
dynamic specification of 384
object storage 218
objects
checking selected state 399
deleting 263
editing in Zinc Designer 251
re-ordering 263
using native objects 156
objects (C++) 56
options
child window 323
combo box 316
horizontal list 313
text 279
vertical list 310
out of memory
FREESTOR example program 386
overloaded functions 60
overloaded operators 60

P

palette map table
changing 399

411

parent window re-ordering object list
finding 401 in Zinc Designer 263, 310, 313, 316, 322,
persistent objects 326, 329, 332, 336, 340
implementation details 224 real
user-defined 78 in Zinc Designer 293
Poll (function) 144 range 294
polymorphism 60 userFunction 294
pop-up items real number (use of)
deleting in Zinc Designer 329, 332 CALC example program 384
re-ordering in Zinc Designer 329, 332 resources
portability clearing 263
international currency 193 deleting 264
international language 185 editing 262
postSpace 176 in Zinc Designer 257
preSpace 176 loading 258
program design 85, 87 storing 260
program flow 18 testing in Zinc Designer 266
program organization Restore 20
Zinc use of 391 run-time features 19
program termination 19
exit function 30
programming
C vs. C++ 210
prompt S
in Zinc Designer 337
pull-down items Save (function) 80
deleting in Zinc Designer 326 scope 216
re-ordering in Zinc Designer 326 scope resolution operator 57
screen
coordinates 176
screen display
deriving 171
Q initialization of 13
Size
queue flags 139 window 19, 20
sizing window objects
PUZZLE example program 387
storage
R Store (function) 225
storage and retrieval 216
abstract view of 218
radio button storing resources
in Zinc Designer 301 in Zinc Designer 260
radio buttons string
BTF_RADIO_BUTTON (flag) 300, 303, editor 271
307 in Zinc Designer 271
setting default options 384 userFunction 272

412 Zinc Application Framework — Programming Techniques

stringID
user-defined 189
structured programming 93

T

tab order

changing in Zinc Designer 263
technical support 5, 397
testing resources

in Zinc Designer 266
text editor

FILEEDIT example program 386
text object

in Zinc Designer 278
time

in Zinc Designer 284

range 285

userFunction 285
TTY_WINDOW

SPY example program 387

U

UI_APPLICATION (class) 24
main (function) 24
WinMain (function) 24

UL_DISPLAY
deriving from 175

UI_DSP.HPP 12

UI_ENV.HPP 12

UIL_EVENT_MAP
user-defined 203

UIL_EVT.HPP 12

UL_GEN.HPP 12

UI_STORAGE_OBIJECT (class) 226

UIL_WIN.HPP 12

UIW_COMBO_BOX
setting a default item 385

user functions 68
associating with buttons 77

Index

bignum 197, 289
button 298
CALC example program 384
calling 96, 107, 113, 128
check box 306
date 282
formatted string 276
integer 292
non-static member function 384
one function for many objects 109
PERIODIC example program 387
pop-up item 332
pull-down item 328
radio button 302
real 294
string 272
text 279
time 285
use of 150
using classes 58

vV

validate function
calling a non-static routine 388
vertical list
compare 309
in Zinc Designer 308
vertical scroll bar
in Zinc Designer 317
virtual list 159

W

widgets
using native widgets 156
window
accessing members 150
closing current 399
creating child windows 321
finding current 401

413

finding parent window 401
making current 402
support objects defined 16
window manager
derived example 124
initialization of 15, 24
window objects
finding the parent 150
retrieval of 226
storage of 224
user-defined 147
windows
using multiple 32
WinMain (function)
UI_APPLICATION class 24

Z

Zinc Designer 41, 231
advanced edit options 254
basic usage 234
bignum 288
button 297
check box 304
child windows 321
clearing resources 263
combo box 314
creating new files 237
creating resources 257
date 281
deleting files 245
deleting objects 263
deleting resources 264
derived objects 254
edit options 251
editing resources 262
file options 237
formatted string 274
group 339
help editor 355
help options 363
horizontal list 311
horizontal scroll bar 319
icon 341

414

image editor 343

importing images 351

integer 291

menu options 233, 344, 356

object bar 233

object list 263

opening files 239

pop-up item 331

preferences 247

prompt 337

pull-down item 327

pull-down menu 325

radio button 301

re-ordering objects 263, 310, 313, 316, 322,
326, 329, 332, 336, 340

real 293

resource options 257

saving files 241, 242

status bar 234

storing resources 260

string 271

testing resources 266

text 278

time 284

tool bar 334

vertical list 308

vertical scroll bar 317

Zinc Application Framework — Programming Techniques

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation,
<http://fsf.org/>

Everﬁone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free"™ in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute It,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or_other work, in_any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document™, below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you'". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section”™ is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document"s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
cgmmercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections'™ are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. |If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain_zero
Invariant Sections. |If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent'” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that i1s suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input

Inc.

to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque'.

Examples of suitable formats for Transparent copies include plain
ASCI1 without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only b
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page™ means, for a printed book, the title ?age itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page' means
the text near the most prominent appearance of the work®s title,
preceding the beginning of the body of the text.

The "publisher™ means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as ""Acknowledgements",
"Dedications', "Endorsements'™, or "History'".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. |If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also_ lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

IT you publish printed copies (or cogies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document®s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers iIn addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

IT the required texts for either cover are too voluminous to fit
legibly, you should put the Ffirst ones listed (as many as Ffit _
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

IT you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
IT you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version_ of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version Tilling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of 1t. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
iT the original publisher of that version gives permission.

B. List on_the Title Page, as authors, one or more persons or_ entities

responsible for authorship of the modifications in the Modified

Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has fewer than five),

unless they release you from this requirement.

State on the Title page the name of the publisher of the

Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the

terms of this License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections

and required Cover Texts given in the Document®s license notice.

H. Include an unaltered copy of this License.

Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new_authors, and

publisher of the Modified Version as given on the Title Page. |ITF
there is no section Entitled "History”™ in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.

You may omit a network location for a work that was ﬁublished at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements'™ or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements'™. Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

0. Preserve any Warranty Disclaimers.

m mo O

IT the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version"s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements', provided it contains

nothing but endorsements of your Modified Version by various
arties--for example, statements of peer review or_that the_ text has
eendapgroved by an organization as the authoritative definition of a
standard.

You may add a passage of up to Five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made b¥? any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalft of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their_names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique b{
adding at the end of it, in parentheses, the name of the origina
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in_the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and _any sections Entitled *"Dedications'”. You must delete all sections
Entitled "Endorsements'.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You mag extract a single document from such a collection, and

distribute it individually under this License, provided you iInsert a
copy of this License into the extracted document, and follow this
éicense in all other respects regarding verbatim copying of that
ocument.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate™ if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation®s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

IT the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document®s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copYright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

IT a_section in the Document is Entitled "Acknowledgements™,
"Dedications', or "History", the requirement (section 4) to Preserve
|tsIT|tIe (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to CO?Y, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and Ffinally
terminates your license, and_(b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. |If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new_ versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
IT the Document specifies that a particular numbered version of this
License "or any later version" applies to it, Kou have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (nhot as a draft) by the
Free Software Foundation. If the Document does not speci a version
number of this License, you may choose any version ever published (nhot
as a_draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy"s public statement of acceptance of a
Bersion permanently authorizes you to choose that version for the
ocument.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site') means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybodY can edit is an example of such a server. A
"Massive Multiauthor Collaboration” (or "MMC™) contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit

corporation with a principal place of business in _San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eli%ible for relicensing” if it is licensed under this
License, and it all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License_in the document and put the following copyright and
license notices just after the title page:

Copyright (¢) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License'.

IT you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with.._Texts.”™ line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

IT you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

IT your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,

to permit their use in free software.

